Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;36(1):143-50.
doi: 10.1183/09031936.00158109. Epub 2009 Dec 8.

Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link

Affiliations
Free article

Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link

R Del Rio et al. Eur Respir J. 2010 Jul.
Free article

Abstract

Intermittent hypoxia, a feature of obstructive sleep apnoea, potentiates ventilatory hypoxic responses, alters heart rate variability and produces hypertension, partially owing to an enhanced carotid body responsiveness to hypoxia. Since oxidative stress is a potential mediator of both chemosensory and cardiorespiratory alterations, we hypothesised that an antioxidant treatment may prevent these alterations. Accordingly, we studied the effects of ascorbic acid (1.25 g.L(-1) drinking water) on plasma lipid peroxidation, nitrotyrosine and inducible nitric oxide synthase (iNOS) immunoreactivity in the carotid body, ventilatory and carotid chemosensory responses to acute hypoxia, heart rate variability and arterial blood pressure in male Sprague-Dawley rats exposed to 5% O(2); 12 episodes.h(-1); 8 h.day(-1) or sham condition for 21 days. Intermittent hypoxia increased plasma lipid peroxidation, nitrotyrosine and iNOS expression in the carotid body, enhanced carotid chemosensory and ventilatory hypoxic responses, modified heart rate variability and produced hypertension. Ascorbic acid prevented the increased plasma lipid peroxidation and nitrotyrosine formation within the carotid body, and the enhanced carotid chemosensory and ventilatory responses to hypoxia, as well as heart rate variability alterations and hypertension. The present results support an essential role for oxidative stress in the generation of carotid body chemosensory potentiation and systemic cardiorespiratory alterations induced by intermittent hypoxia.

PubMed Disclaimer

MeSH terms

LinkOut - more resources