An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies
- PMID: 20000344
- PMCID: PMC2819092
- DOI: 10.1021/pr900888b
An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies
Abstract
A high-throughput approach and platform using 15 min reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking 20 reference peptides at varying concentrations from 1 ng/mL to 10 microg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected 13 out of the 20 spiked peptides that had concentrations >or=100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for 19 of the 20 peptides with all spiking levels present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects and achieve high measurement accuracy, but in turn limits the achievable dynamic range compared to the IMS-TOF instrument.
Figures







Similar articles
-
Optimum collision energies for proteomics: The impact of ion mobility separation.J Mass Spectrom. 2023 Sep;58(9):e4957. doi: 10.1002/jms.4957. Epub 2023 Jul 6. J Mass Spectrom. 2023. PMID: 37415399
-
Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurements.Anal Chem. 2005 Dec 1;77(23):7763-73. doi: 10.1021/ac051257o. Anal Chem. 2005. PMID: 16316187
-
Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics.Anal Chim Acta. 2018 Jul 5;1012:1-9. doi: 10.1016/j.aca.2018.01.037. Epub 2018 Feb 5. Anal Chim Acta. 2018. PMID: 29475469 Free PMC article.
-
Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.J Pharm Biomed Anal. 2014 Jan;87:176-90. doi: 10.1016/j.jpba.2013.04.037. Epub 2013 May 6. J Pharm Biomed Anal. 2014. PMID: 23721687 Review.
-
Development of high throughput dispersive LC-ion mobility-TOFMS techniques for analysing the human plasma proteome.Brief Funct Genomic Proteomic. 2004 Aug;3(2):177-86. doi: 10.1093/bfgp/3.2.177. Brief Funct Genomic Proteomic. 2004. PMID: 15355599 Review.
Cited by
-
Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.Anal Chem. 2015 Nov 17;87(22):11301-8. doi: 10.1021/acs.analchem.5b02481. Epub 2015 Oct 28. Anal Chem. 2015. PMID: 26510005 Free PMC article.
-
Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.Nat Protoc. 2016 Apr;11(4):795-812. doi: 10.1038/nprot.2016.042. Epub 2016 Mar 24. Nat Protoc. 2016. PMID: 27010757
-
High-resolution differential ion mobility separations using planar analyzers at elevated dispersion fields.Anal Chem. 2010 Sep 15;82(18):7649-55. doi: 10.1021/ac101413k. Anal Chem. 2010. PMID: 20666414 Free PMC article.
-
Pushing the Frontier of High-Definition Ion Mobility Spectrometry Using FAIMS.Mass Spectrom (Tokyo). 2013;2(Spec Iss):S0011. doi: 10.5702/massspectrometry.S0011. Epub 2013 Apr 15. Mass Spectrom (Tokyo). 2013. PMID: 24349930 Free PMC article.
-
Overtone mobility spectrometry: part 3. On the origin of peaks.J Am Soc Mass Spectrom. 2011 May;22(5):804-16. doi: 10.1007/s13361-011-0087-y. Epub 2011 Mar 4. J Am Soc Mass Spectrom. 2011. PMID: 21472515 Free PMC article.
References
-
- Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207. - PubMed
-
- Drabik A, Bierczynska-Krzysik A, Bodzon-Kulakowska A, Suder P, Kotlinska J, Silberring J. Proteomics in neurosciences. Mass Spectrom. Rev. 2007;26:432–450. - PubMed
-
- Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003;426:570–577. - PubMed
-
- Jacobs JM, Mottaz HM, Yu LR, Anderson DJ, Moore RJ, Chen WNU, Auberry KJ, Strittmatter EF, Monroe ME, Thrall BD, Camp DG, Smith RD. Multidimensional proteome analysis of human mammary epithelial cells. J. Proteome Res. 2004;3:68–75. - PubMed
-
- Conrods TP, Zhou M, Petricoin EF, Liotta L, Veenstra TD. Cancer diagnosis using proteomic patterns. Expert Rev. Mol. Diagn. 2003;3:411–420. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources