Palmitic Acid Is a Novel CD4 Fusion Inhibitor That Blocks HIV Entry and Infection
- PMID: 20001317
- PMCID: PMC2828184
- DOI: 10.1089/aid.2009.0019
Palmitic Acid Is a Novel CD4 Fusion Inhibitor That Blocks HIV Entry and Infection
Abstract
The high rate of HIV-1 mutation and the frequent sexual transmission highlight the need for novel therapeutic modalities with broad activity against both CXCR4 (X4) and CCR5 (R5)-tropic viruses. We investigated a large number of natural products, and from Sargassum fusiforme we isolated and identified palmitic acid (PA) as a natural small bioactive molecule with activity against HIV-1 infection. Treatment with 100 microM PA inhibited both X4 and R5 independent infection in the T cell line up to 70%. Treatment with 22 microM PA inhibited X4 infection in primary peripheral blood lymphocytes (PBL) up to 95% and 100 microM PA inhibited R5 infection in primary macrophages by over 90%. Inhibition of infection was concentration dependent, and cell viability for all treatments tested remained above 80%, similar to treatment with 10(-6)M nucleoside analogue 2', 3'-dideoxycytidine (ddC). Micromolar PA concentrations also inhibited cell-to-cell fusion and specific virus-to-cell fusion up to 62%. PA treatment did not result in internalization of the cell surface CD4 receptor or lipid raft disruption, and it did not inhibit intracellular virus replication. PA directly inhibited gp120-CD4 complex formation in a dose-dependent manner. We used fluorescence spectroscopy to determine that PA binds to the CD4 receptor with K(d) approximately 1.5 +/- 0.2 microM, and we used one-dimensional saturation transfer difference NMR (STD-NMR) to determined that the PA binding epitope for CD4 consists of the hydrophobic methyl and methelene groups located away from the PA carboxyl terminal, which blocks efficient gp120-CD4 attachment. These findings introduce a novel class of antiviral compound that binds directly to the CD4 receptor, blocking HIV-1 entry and infection. Understanding the structure-affinity relationship (SAR) between PA and CD4 should lead to the development of PA analogs with greater potency against HIV-1 entry.
Figures





References
-
- Perelson AS. Essunger P. Cao Y, et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature. 1997;387(6629):188–191. - PubMed
-
- Gulick RM. Mellors JW. Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med. 1997;337(11):734–739. - PubMed
-
- Matthews T. Salgo M. Greenberg M. Chung J. DeMasi R. Bolognesi D. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat Rev Drug Discov. 2004;3(3):215–225. - PubMed
-
- Wegner SA. Brodine SK. Mascola JR, et al. Prevalence of genotypic and phenotypic resistance to anti-retroviral drugs in a cohort of therapy-naive HIV-1 infected US military personnel. AIDS. 2000;14(8):1009–1015. - PubMed
-
- Little SJ. Holte S. Routy JP, et al. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med. 2002;347(6):385–394. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous