Epigenetics of neurological cancers
- PMID: 20001799
- PMCID: PMC4018230
- DOI: 10.2217/fon.09.132
Epigenetics of neurological cancers
Abstract
Epigenetic mechanisms involving DNA methylation, histone modifications and noncoding RNAs regulate and maintain gene-expression states. Similar to genetic mutations, alterations in epigenetic regulation can lead to uncontrolled cell division, tumor initiation and growth, invasiveness and metastasis. Research in brain cancer, particularly gliomas, has uncovered global and gene-specific DNA hypomethylation, local DNA hypermethylation of gene promoters and the de-regulation of microRNA expression. Understanding epigenetic dysregulation in brain cancers has provided new tools for prognostication, as well as suggesting new approaches to therapy. There is significant interest in new sequencing-based technologies that map genetic and epigenetic alterations comprehensively and at high resolution. These methods are being applied to brain tumors, and will better define the contribution of epigenetic defects to tumorigenesis.
Figures
References
-
- Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14:9–25. - PubMed
-
- Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl.):245–254. - PubMed
-
- Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–220. - PubMed
-
- Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene. 1988;74:9–12. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical