Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 7;263(3):328-36.
doi: 10.1016/j.jtbi.2009.12.008. Epub 2009 Dec 22.

Anomalies in the transcriptional regulatory network of the yeast Saccharomyces cerevisiae

Affiliations
Free article

Anomalies in the transcriptional regulatory network of the yeast Saccharomyces cerevisiae

M Tuğrul et al. J Theor Biol. .
Free article

Abstract

We investigate the structural and dynamical properties of the transcriptional regulatory network of the Yeast Saccharomyces cerevisiae and compare it with two "unbiased" ensembles: one obtained by reshuffling the edges and the other generated by mimicking the transcriptional regulation mechanism within the cell. Both ensembles reproduce the degree distributions (the first-by construction-exactly and the second approximately), degree-degree correlations and the k-core structure observed in Yeast. An exceptionally large dynamically relevant core network found in Yeast in comparison with the second ensemble points to a strong bias towards a collective organization which is achieved by subtle modifications in the network's degree distributions. We use a Boolean model of regulatory dynamics with various classes of update functions to represent in vivo regulatory interactions. We find that the Yeast's core network has a qualitatively different behavior, accommodating on average multiple attractors unlike typical members of both reference ensembles which converge to a single dominant attractor. Finally, we investigate the robustness of the networks and find that the stability depends strongly on the used function class. The robustness measure is squeezed into a narrower band around the order-chaos boundary when Boolean inputs are required to be nonredundant on each node. However, the difference between the reference models and the Yeast's core is marginal, suggesting that the dynamically stable network elements are located mostly on the peripherals of the regulatory network. Consistently, the statistically significant three-node motifs in the dynamical core of Yeast turn out to be different from and less stable than those found in the full transcriptional regulatory network.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources