Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 12;20(1):49-54.
doi: 10.1016/j.cub.2009.10.072. Epub 2009 Dec 10.

Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor

Affiliations
Free article

Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor

Julieta L Mateos et al. Curr Biol. .
Free article

Abstract

MicroRNAs (miRNAs) are widespread posttranscriptional regulators of gene expression. They are processed from longer primary transcripts that contain foldback structures (reviewed in). In animals, a complex formed by Drosha and DGCR8/Pasha recognizes the transition between the single-stranded RNA sequences and the stem loop to produce the first cleavage step in miRNA biogenesis. Whereas animal precursors are of uniform size and shape, their plant counterparts comprise a collection of variable stem loops, and little is known about the structural clues recognized during their processing. Here, we designed an unbiased approach based on the random mutagenesis of the MIR172a precursor to study miRNA processing in plants. Randomly mutated precursors were overexpressed in Arabidopsis, and their activity was determined in vivo. We gathered sequence data from these transgenes and used it to build a MIR172a precursor map highlighting relevant and neutral positions for its processing. A 15 nucleotide stem segment below the miRNA/miRNA(*) duplex was essential for MIR172a processing. In contrast, mutations in the terminal-loop region were mostly neutral, yet a loop was required for miR172 biogenesis. The results could be extended to other precursors, suggesting the existence of common features in at least part of the plant precursors.

PubMed Disclaimer

Comment in

Publication types