Crystal growth of proteins, nucleic acids, and viruses in gels
- PMID: 20005247
- DOI: 10.1016/j.pbiomolbio.2009.12.002
Crystal growth of proteins, nucleic acids, and viruses in gels
Abstract
Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.
Similar articles
-
Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology.Biophys Chem. 2005 Dec 1;118(2-3):102-12. doi: 10.1016/j.bpc.2005.06.014. Epub 2005 Sep 8. Biophys Chem. 2005. PMID: 16150532 Review.
-
Crystallization of macromolecules in silica gels.Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):479-83. doi: 10.1107/S090744499400274X. Acta Crystallogr D Biol Crystallogr. 1994. PMID: 15299406
-
Growth and disorder of macromolecular crystals: insights from atomic force microscopy and X-ray diffraction studies.Methods. 2004 Nov;34(3):273-99. doi: 10.1016/j.ymeth.2004.03.020. Methods. 2004. PMID: 15325647
-
Crystallization of biological macromolecules using agarose gel.Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1657-9. doi: 10.1107/s0907444902012738. Epub 2002 Sep 26. Acta Crystallogr D Biol Crystallogr. 2002. PMID: 12351881
-
Counterdiffusion methods applied to protein crystallization.Prog Biophys Mol Biol. 2009 Nov;101(1-3):26-37. doi: 10.1016/j.pbiomolbio.2009.12.004. Epub 2009 Dec 16. Prog Biophys Mol Biol. 2009. PMID: 20018206 Review.
Cited by
-
Biosynthesis of micro- and nanocrystals of Pb (II), Hg (II) and Cd (II) sulfides in four Candida species: a comparative study of in vivo and in vitro approaches.Microb Biotechnol. 2017 Mar;10(2):405-424. doi: 10.1111/1751-7915.12485. Epub 2017 Jan 16. Microb Biotechnol. 2017. PMID: 28093869 Free PMC article.
-
Designer Gelators for the Crystallization of a Salt Active Pharmaceutical Ingredient-Mexiletine Hydrochloride.Cryst Growth Des. 2022 Nov 2;22(11):6775-6785. doi: 10.1021/acs.cgd.2c00925. Epub 2022 Oct 12. Cryst Growth Des. 2022. PMID: 36345390 Free PMC article.
-
What macromolecular crystallogenesis tells us - what is needed in the future.IUCrJ. 2017 May 24;4(Pt 4):340-349. doi: 10.1107/S2052252517006595. eCollection 2017 Jul 1. IUCrJ. 2017. PMID: 28875021 Free PMC article. Review.
-
Improving RNA Crystal Diffraction Quality by Postcrystallization Treatment.Methods Mol Biol. 2021;2323:25-37. doi: 10.1007/978-1-0716-1499-0_3. Methods Mol Biol. 2021. PMID: 34086271 Free PMC article.
-
Biocrystallography: past, present, future.HFSP J. 2010 Jun;4(3-4):109-21. doi: 10.2976/1.3369281. Epub 2010 Apr 22. HFSP J. 2010. PMID: 21119764 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources