Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;221(2):353-66.
doi: 10.1016/j.expneurol.2009.12.003. Epub 2009 Dec 11.

Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury

Affiliations

Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury

Qi Xiao et al. Exp Neurol. 2010 Feb.

Abstract

Bone morphogenetic proteins (BMPs) play a critical role in regulating cell fate determination during central nervous system (CNS) development. In light of recent findings that BMP-2/4/7 expressions are upregulated after spinal cord injury, we hypothesized that the BMP signaling pathway is important in regulating cellular composition in the injured spinal cord. We found that BMP expressions were upregulated in neural stem cells (NSCs), neurons, oligodendrocytes and microglia/macrophages. Increased expression levels of pSmad1/5/8 (downstream molecules of BMP) were detected in neurons, NSCs, astrocytes, oligodendrocytes and oligodendroglial progenitor cells (OPCs). Active astrocytes which form the astroglial scar were probably derived from NSCs, OPCs and resident astrocytes. Since quiescent NSCs in the normal adult spinal cord will proliferate and differentiate actively into neural cells after traumatic injury, we proposed that BMPs can regulate cellular components by controlling NSC differentiation. Neurosphere culture from adult mouse spinal cord showed that BMP-4 promoted astrocyte differentiation from NSCs while suppressing production of neurons and oligodendrocytes. Conversely, inhibition of BMP-4 by Noggin notably decreased the ratio of astrocyte to neuron numbers. However, intrathecal administration of Noggin in the injured spinal cord failed to attenuate glial fibrillar acidic protein (GFAP) expression even though it effectively reduced pSmad expression. Noggin treatment did not block phosphorylation of Stat3 and the induction of GFAP in the injured spinal cord, suggesting that in addition to the BMP/Smad pathway, the JAK/STAT pathway may also be involved in the regulation of GFAP expression after spinal cord injury.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms