Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 2;208(2):352-8.
doi: 10.1016/j.bbr.2009.11.046. Epub 2009 Dec 17.

Implication of 5-HT2 receptor subtypes in the mechanism of action of the GABAergic compound etifoxine in the four-plate test in Swiss mice

Affiliations

Implication of 5-HT2 receptor subtypes in the mechanism of action of the GABAergic compound etifoxine in the four-plate test in Swiss mice

Michel Bourin et al. Behav Brain Res. .

Abstract

Etifoxine is an anxiolytic compound structurally unrelated to benzodiazepine and neurosteroids but potentiating GABA(A) receptor function by a dual mode of action including a direct positive allosteric modulation through a site distinct from that of benzodiazepines. Etifoxine has been shown to possess some anxiolytic-like effects in rodents.

Methods: Using the four-plate test (FPT) model of anxiety in mice the potential anxiolytic-like effect of etifoxine was first to re-evaluate. In a second part, in order to better understand the mechanism of action of etifoxine, interaction studies with 5-HT(2) ligands were performed in the FPT as mixed serotonergic and GABAergic mechanisms are highly implicated in the anxiolytic-like effect observed in the FPT.

Results: A dose response effect was observed for etifoxine from the dose of 40-100 mg/kg. Doses above to 60 mg/kg induced a sedative effect as was determined in the actimeter test. The 5-HT(2A) receptor antagonist SR 46349B blocked the anti-punishment activity of etifoxine (40 and 50 mg/kg), while the 5-HT(2B/2C) receptor antagonist, SB 206553 and the 5-HT(2C) receptor antagonist, RS 10-2221 did not alter its effects. In a same way, only the 5-HT(2A) agonist DOI induced anti-punishment effect when co-administered with subthreshold doses of etifoxine.

Conclusion: The present results demonstrated that etifoxine effect was modulated by 5-HT(2A) ligands co-administration. The large literature concerning GABA and 5-HT suggests that they could be co-released and could act as co-transmitters in some regions of the CNS and cross-communication between the two neurotransmitters might be an important modulator process of neuronal activity.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms