Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data
- PMID: 20006957
- PMCID: PMC2793368
- DOI: 10.1016/j.bpj.2009.09.031
Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data
Abstract
Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood--selecting the most likely parameter values--to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net.
Figures



Similar articles
-
Graphical models for inferring single molecule dynamics.BMC Bioinformatics. 2010 Oct 26;11 Suppl 8(Suppl 8):S2. doi: 10.1186/1471-2105-11-S8-S2. BMC Bioinformatics. 2010. PMID: 21034427 Free PMC article.
-
Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments.Biophys J. 2014 Mar 18;106(6):1327-37. doi: 10.1016/j.bpj.2013.12.055. Biophys J. 2014. PMID: 24655508 Free PMC article.
-
Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011106. doi: 10.1103/PhysRevE.76.011106. Epub 2007 Jul 12. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. PMID: 17677409
-
Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer.Annu Rev Phys Chem. 2016 May 27;67:441-65. doi: 10.1146/annurev-physchem-040215-112544. Annu Rev Phys Chem. 2016. PMID: 27215819 Review.
-
Bayesian Inference: The Comprehensive Approach to Analyzing Single-Molecule Experiments.Annu Rev Biophys. 2021 May 6;50:191-208. doi: 10.1146/annurev-biophys-082120-103921. Epub 2021 Feb 3. Annu Rev Biophys. 2021. PMID: 33534607 Free PMC article. Review.
Cited by
-
A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex.Nat Commun. 2022 Dec 3;13(1):7460. doi: 10.1038/s41467-022-35116-5. Nat Commun. 2022. PMID: 36460652 Free PMC article.
-
Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET.Biophys J. 2015 Jul 7;109(1):66-75. doi: 10.1016/j.bpj.2015.05.025. Biophys J. 2015. PMID: 26153703 Free PMC article.
-
A single molecule investigation of i-motif stability, folding intermediates, and potential as in-situ pH sensor.Front Mol Biosci. 2022 Aug 22;9:977113. doi: 10.3389/fmolb.2022.977113. eCollection 2022. Front Mol Biosci. 2022. PMID: 36072435 Free PMC article.
-
Vesicular stomatitis virus nucleocapsids diffuse through cytoplasm by hopping from trap to trap in random directions.Sci Rep. 2020 Jun 30;10(1):10643. doi: 10.1038/s41598-020-66942-6. Sci Rep. 2020. PMID: 32606395 Free PMC article.
-
Integration Host Factor Binds DNA Holliday Junctions.Int J Mol Sci. 2022 Dec 29;24(1):580. doi: 10.3390/ijms24010580. Int J Mol Sci. 2022. PMID: 36614023 Free PMC article.
References
-
- Zhuang X.W., Bartley L.E., Babcock H.P., Russell R., Ha T.J. A single-molecule study of RNA catalysis and folding. Science. 2000;288:2048–2051. - PubMed
-
- Zhuang X.W., Kim H., Pereira M.J.B., Babcock H.P., Walter N.G. Correlating structural dynamics and function in single ribozyme molecules. Science. 2002;296:1473–1476. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases