Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection
- PMID: 20007040
- DOI: 10.1109/TITB.2009.2036604
Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection
Abstract
This paper presents a parallel implementation based on insight segmentation and registration toolkit for a multiscale feature extraction and region growing algorithm, applied to retinal blood vessels segmentation. This implementation is capable of achieving an accuracy (Ac) comparable to its serial counterpart (about 92%), but 8 to 10 times faster. In this paper, the Ac of this parallel implementation is evaluated by comparison with expert manual segmentation (obtained from public databases). On the other hand, its performance is compared with previous published serial implementations. Both these characteristics make this parallel implementation feasible for the analysis of a larger amount of high-resolution retinal images, achieving a faster and high-quality segmentation of retinal blood vessels.
Similar articles
-
Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction.IEEE Trans Biomed Eng. 2011 May;58(5):1183-92. doi: 10.1109/TBME.2010.2097599. Epub 2010 Dec 10. IEEE Trans Biomed Eng. 2011. PMID: 21147592
-
Segmentation of blood vessels from red-free and fluorescein retinal images.Med Image Anal. 2007 Feb;11(1):47-61. doi: 10.1016/j.media.2006.11.004. Epub 2007 Jan 3. Med Image Anal. 2007. PMID: 17204445
-
FABC: retinal vessel segmentation using AdaBoost.IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1267-74. doi: 10.1109/TITB.2010.2052282. Epub 2010 Jun 7. IEEE Trans Inf Technol Biomed. 2010. PMID: 20529750
-
Blood vessel segmentation in color fundus images based on regional and Hessian features.Graefes Arch Clin Exp Ophthalmol. 2017 Aug;255(8):1525-1533. doi: 10.1007/s00417-017-3677-y. Epub 2017 May 4. Graefes Arch Clin Exp Ophthalmol. 2017. PMID: 28474130 Review.
-
Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification.Int J Comput Assist Radiol Surg. 2014 Sep;9(5):795-811. doi: 10.1007/s11548-013-0965-9. Epub 2013 Dec 24. Int J Comput Assist Radiol Surg. 2014. PMID: 24366332 Review.
Cited by
-
Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase.PLoS One. 2015 Apr 1;10(4):e0122332. doi: 10.1371/journal.pone.0122332. eCollection 2015. PLoS One. 2015. PMID: 25830353 Free PMC article.
-
Enhancing fine retinal vessel segmentation: Morphological reconstruction and double thresholds filtering strategy.PLoS One. 2023 Jul 19;18(7):e0288792. doi: 10.1371/journal.pone.0288792. eCollection 2023. PLoS One. 2023. PMID: 37467245 Free PMC article.
-
Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.Comput Math Methods Med. 2015;2015:419279. doi: 10.1155/2015/419279. Epub 2015 Feb 24. Comput Math Methods Med. 2015. PMID: 25810749 Free PMC article.
-
A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation.Sensors (Basel). 2019 Nov 13;19(22):4949. doi: 10.3390/s19224949. Sensors (Basel). 2019. PMID: 31766276 Free PMC article.
-
A Teleophthalmology Support System Based on the Visibility of Retinal Elements Using the CNNs.Sensors (Basel). 2020 May 16;20(10):2838. doi: 10.3390/s20102838. Sensors (Basel). 2020. PMID: 32429400 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources