Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes
- PMID: 20007716
- PMCID: PMC2836080
- DOI: 10.1074/jbc.M109.068098
Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes
Abstract
The archaeal ribosomal stalk complex has been shown to have an apparently conserved functional structure with eukaryotic pentameric stalk complex; it provides access to eukaryotic elongation factors at levels comparable to that of the eukaryotic stalk. The crystal structure of the archaeal heptameric (P0(P1)(2)(P1)(2)(P1)(2)) stalk complex shows that the rRNA anchor protein P0 consists of an N-terminal rRNA-anchoring domain followed by three separated spine helices on which three P1 dimers bind. Based on the structure, we have generated P0 mutants depleted of any binding site(s) for P1 dimer(s). Factor-dependent GTPase assay of such mutants suggested that the first P1 dimer has higher activity than the others. Furthermore, we constructed a model of the archaeal 50 S with stalk complex by superposing the rRNA-anchoring domain of P0 on the archaeal 50 S. This model indicates that the C termini of P1 dimers where translation factors bind are all localized to the region between the stalk base of the 50 S and P0 spine helices. Together with the mutational experiments we infer that the functional significance of multiple copies of P1 is in creating a factor pool within a limited space near the stalk base of the ribosome.
Figures







Similar articles
-
Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes.Toxins (Basel). 2015 Feb 25;7(3):638-47. doi: 10.3390/toxins7030638. Toxins (Basel). 2015. PMID: 25723321 Free PMC article. Review.
-
Three binding sites for stalk protein dimers are generally present in ribosomes from archaeal organism.J Biol Chem. 2007 Nov 9;282(45):32827-33. doi: 10.1074/jbc.M705412200. Epub 2007 Sep 5. J Biol Chem. 2007. PMID: 17804412
-
A mode of assembly of P0, P1, and P2 proteins at the GTPase-associated center in animal ribosome: in vitro analyses with P0 truncation mutants.J Biol Chem. 2005 Nov 25;280(47):39193-9. doi: 10.1074/jbc.M506050200. Epub 2005 Sep 27. J Biol Chem. 2005. PMID: 16188884
-
The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion.Nucleic Acids Res. 2018 Apr 6;46(6):3232-3244. doi: 10.1093/nar/gky115. Nucleic Acids Res. 2018. PMID: 29471537 Free PMC article.
-
Structure of a two-domain N-terminal fragment of ribosomal protein L10 from Methanococcus jannaschii reveals a specific piece of the archaeal ribosomal stalk.J Mol Biol. 2010 Jun 4;399(2):214-20. doi: 10.1016/j.jmb.2010.04.017. Epub 2010 Apr 24. J Mol Biol. 2010. PMID: 20399793 Review.
Cited by
-
Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes.Toxins (Basel). 2015 Feb 25;7(3):638-47. doi: 10.3390/toxins7030638. Toxins (Basel). 2015. PMID: 25723321 Free PMC article. Review.
-
The base of the ribosomal P stalk from Methanococcus jannaschii: crystallization and preliminary X-ray studies.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Nov;69(Pt 11):1288-90. doi: 10.1107/S1744309113026729. Epub 2013 Oct 30. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013. PMID: 24192371 Free PMC article.
-
Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α.Nucleic Acids Res. 2014 Dec 16;42(22):14042-52. doi: 10.1093/nar/gku1248. Epub 2014 Nov 26. Nucleic Acids Res. 2014. PMID: 25428348 Free PMC article.
-
The ribosomal stalk protein is crucial for the action of the conserved ATPase ABCE1.Nucleic Acids Res. 2018 Sep 6;46(15):7820-7830. doi: 10.1093/nar/gky619. Nucleic Acids Res. 2018. PMID: 30010948 Free PMC article.
-
Switch of the interactions between the ribosomal stalk and EF1A in the GTP- and GDP-bound conformations.Sci Rep. 2019 Oct 14;9(1):14761. doi: 10.1038/s41598-019-51266-x. Sci Rep. 2019. PMID: 31611569 Free PMC article.
References
-
- Möller W., Maassen J. A. (1986) in Structure, Function, and Genetics of Ribosomes (Hardesty B., Kramer G. eds) pp. 309–325, Springer-Verlag New York Inc., New York
-
- Chandra Sanyal S., Liljas A. (2000) Curr. Opin. Struct. Biol. 10, 633–636 - PubMed
-
- Traut R. R., Dey D., Bochkariov D. E., Oleinikov A. V., Jokhadze G. G., Hamman B., Jameson D. (1995) Biochem. Cell Biol. 73, 949–958 - PubMed
-
- Gudkov A. T. (1997) FEBS Lett. 407, 253–256 - PubMed
-
- Bocharov E. V., Sobol A. G., Pavlov K. V., Korzhnev D. M., Jaravine V. A., Gudkov A. T., Arseniev A. S. (2004) J. Biol. Chem. 279, 17697–17706 - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases