Delay stabilization of periodic orbits in coupled oscillator systems
- PMID: 20008404
- DOI: 10.1098/rsta.2009.0232
Delay stabilization of periodic orbits in coupled oscillator systems
Abstract
We study diffusively coupled oscillators in Hopf normal form. By introducing a non-invasive delay coupling, we are able to stabilize the inherently unstable anti-phase orbits. For the super- and subcritical cases, we state a condition on the oscillator's nonlinearity that is necessary and sufficient to find coupling parameters for successful stabilization. We prove these conditions and review previous results on the stabilization of odd-number orbits by time-delayed feedback. Finally, we illustrate the results with numerical simulations.
This journal is © 2010 The Royal Society
Similar articles
-
Complex dynamics and synchronization of delayed-feedback nonlinear oscillators.Philos Trans A Math Phys Eng Sci. 2010 Jan 28;368(1911):343-66. doi: 10.1098/rsta.2009.0225. Philos Trans A Math Phys Eng Sci. 2010. PMID: 20008405
-
Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control.Chaos. 2006 Sep;16(3):033109. doi: 10.1063/1.2219702. Chaos. 2006. PMID: 17014214
-
Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.Chaos. 2008 Jun;18(2):023111. doi: 10.1063/1.2905146. Chaos. 2008. PMID: 18601478
-
Delayed feedback control of chaos.Philos Trans A Math Phys Eng Sci. 2006 Sep 15;364(1846):2309-34. doi: 10.1098/rsta.2006.1827. Philos Trans A Math Phys Eng Sci. 2006. PMID: 16893790 Review.
-
Delays and weakly coupled neuronal oscillators.Philos Trans A Math Phys Eng Sci. 2009 Mar 28;367(1891):1097-115. doi: 10.1098/rsta.2008.0259. Philos Trans A Math Phys Eng Sci. 2009. PMID: 19218153 Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources