Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;24(5):1431-41.
doi: 10.1096/fj.09-148601. Epub 2009 Dec 14.

Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis

Affiliations

Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis

Alejandro Ocampo et al. FASEB J. 2010 May.

Abstract

Alterations in mitochondrial metabolism have been associated with age-related neurodegenerative disorders. This is seen in diseases caused by misfolding of proteins with expanded polyglutamine (polyQ) tracts, such as Huntington's disease. Although evidence of mitochondrial impairment has been extensively documented in patients and disease models, the mechanisms involved and their relevance to the initiation of polyQ cytotoxicity and development of clinical manifestations remain controversial. We report that in yeast models of polyQ cytotoxicity, wild-type and mutant polyQ domains might associate early with the outer mitochondrial membrane. The association of mutant domains with mitochondrial membranes could contribute to induce significant changes in mitochondrial physiology, ultimately compromising the cell's ability to respire. The respiratory defect can be fully prevented by enhancing mitochondrial biogenesis by overexpression of Hap4p, the catalytic subunit of the transcriptional activator Hap2/3/4/5p complex, the master regulator of the expression of many nuclear genes encoding mitochondrial proteins in yeast. Protecting cellular respiratory capacity in this way ameliorates the effect of expanded polyQ on cellular fitness. We conclude that mitochondrial dysfunction is an important contributor to polyQ cytotoxicity. Our results suggest that therapeutic approaches enhancing mitochondrial biogenesis could reduce polyQ toxicity and delay the development of clinical symptoms in patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources