Transcriptional competence in pluripotency
- PMID: 20008929
- PMCID: PMC2800094
- DOI: 10.1101/gad.1881609
Transcriptional competence in pluripotency
Abstract
Embryonic stem (ES) cells possess a globally open, decondensed chromatin structure that, together with trans-acting factors, supports transcriptional competence of developmentally regulated genes. However, our understanding of the mechanisms that establish transcriptional competence of specific genes is limited. In this issue of Genes & Development, Xu and colleagues (pp. 2824-2838) show that tissue-specific enhancers are actively marked by an unmethylated window in ES cells and induced pluripotent stem (iPS) cells. They propose a model and present supporting evidence to demonstrate the active involvement of pioneer transcription factors in this process. This work marks an important step toward the understanding of the mechanisms that define and maintain pluripotency, and calls for the identification of the factors that participate in the establishment of transcriptional competence in pluripotent cells.
Figures

Comment on
-
Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells.Genes Dev. 2009 Dec 15;23(24):2824-38. doi: 10.1101/gad.1861209. Genes Dev. 2009. PMID: 20008934 Free PMC article.
References
-
- Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci. 2001;2:287–293. - PubMed
-
- Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006;8:532–538. - PubMed
-
- Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–837. - PubMed
-
- Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–326. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous