EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
- PMID: 20009104
- PMCID: PMC2978002
- DOI: 10.1126/scisignal.2000446
EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
Abstract
Glioblastoma, the most common malignant brain tumor, is among the most lethal and difficult cancers to treat. Although epidermal growth factor receptor (EGFR) mutations are frequent in glioblastoma, their clinical relevance is poorly understood. Studies of tumors from patients treated with the EGFR inhibitor lapatinib revealed that EGFR induces the cleavage and nuclear translocation of the master transcriptional regulator of fatty acid synthesis, sterol regulatory element-binding protein 1 (SREBP-1). This response was mediated by Akt; however, clinical data from rapamycin-treated patients showed that SREBP-1 activation was independent of the mammalian target of rapamycin complex 1, possibly explaining rapamycin's poor efficacy in the treatment of such tumors. Glioblastomas without constitutively active EGFR signaling were resistant to inhibition of fatty acid synthesis, whereas introduction of a constitutively active mutant form of EGFR, EGFRvIII, sensitized tumor xenografts in mice to cell death, which was augmented by the hydroxymethylglutaryl coenzyme A reductase inhibitor atorvastatin. These results identify a previously undescribed EGFR-mediated prosurvival metabolic pathway and suggest new therapeutic approaches to treating EGFR-activated glioblastomas.
Figures







Similar articles
-
An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway.Cancer Discov. 2011 Oct;1(5):442-56. doi: 10.1158/2159-8290.CD-11-0102. Epub 2011 Sep 15. Cancer Discov. 2011. PMID: 22059152 Free PMC article.
-
EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts.Mol Cancer Ther. 2009 Jul;8(7):1751-60. doi: 10.1158/1535-7163.MCT-09-0188. Epub 2009 Jul 7. Mol Cancer Ther. 2009. PMID: 19584231 Free PMC article.
-
The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis.Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12932-7. doi: 10.1073/pnas.0906606106. Epub 2009 Jul 22. Proc Natl Acad Sci U S A. 2009. PMID: 19625624 Free PMC article.
-
PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma.Oncotarget. 2016 May 31;7(22):33440-50. doi: 10.18632/oncotarget.7961. Oncotarget. 2016. PMID: 26967052 Free PMC article. Review.
-
Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies.Neuro Oncol. 2014 Oct;16 Suppl 8(Suppl 8):viii14-9. doi: 10.1093/neuonc/nou222. Neuro Oncol. 2014. PMID: 25342600 Free PMC article. Review.
Cited by
-
An AKT/PRMT5/SREBP1 axis in lung adenocarcinoma regulates de novo lipogenesis and tumor growth.Cancer Sci. 2021 Aug;112(8):3083-3098. doi: 10.1111/cas.14988. Epub 2021 Jun 13. Cancer Sci. 2021. PMID: 34033176 Free PMC article.
-
Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer.Breast Cancer Res. 2016 Jun 1;18(1):58. doi: 10.1186/s13058-016-0713-5. Breast Cancer Res. 2016. PMID: 27246191 Free PMC article.
-
Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.J Neurosurg. 2017 May;126(5):1448-1460. doi: 10.3171/2016.1.JNS152077. Epub 2016 Jul 15. J Neurosurg. 2017. PMID: 27419830 Free PMC article.
-
Targeting mTOR in Glioblastoma: Rationale and Preclinical/Clinical Evidence.Dis Markers. 2018 Dec 18;2018:9230479. doi: 10.1155/2018/9230479. eCollection 2018. Dis Markers. 2018. PMID: 30662577 Free PMC article. Review.
-
Glioblastoma Metabolism: Insights and Therapeutic Strategies.Int J Mol Sci. 2023 May 23;24(11):9137. doi: 10.3390/ijms24119137. Int J Mol Sci. 2023. PMID: 37298093 Free PMC article. Review.
References
-
- Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–996. - PubMed
-
- Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–2710. - PubMed
-
- Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol. 2007;19:124–134. - PubMed
-
- Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103:211–225. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- CA108633/CA/NCI NIH HHS/United States
- M01-RR03186/RR/NCRR NIH HHS/United States
- R01 NS050151/NS/NINDS NIH HHS/United States
- P30CA54174/CA/NCI NIH HHS/United States
- NS050151/NS/NINDS NIH HHS/United States
- CA16672/CA/NCI NIH HHS/United States
- U54 CA119347/CA/NCI NIH HHS/United States
- U01 CA062399/CA/NCI NIH HHS/United States
- U01 CA062421/CA/NCI NIH HHS/United States
- U01 CA062422/CA/NCI NIH HHS/United States
- CA62412/CA/NCI NIH HHS/United States
- U01 CA062407/CA/NCI NIH HHS/United States
- U01 CA062426/CA/NCI NIH HHS/United States
- M01 RR000079/RR/NCRR NIH HHS/United States
- M01 RR000056/RR/NCRR NIH HHS/United States
- M01-RR00079/RR/NCRR NIH HHS/United States
- R01 CA108633/CA/NCI NIH HHS/United States
- U01CA62422/CA/NCI NIH HHS/United States
- M01-RR00056/RR/NCRR NIH HHS/United States
- CA 62404/CA/NCI NIH HHS/United States
- U01CA62426/CA/NCI NIH HHS/United States
- U01 CA062412/CA/NCI NIH HHS/United States
- U01CA62399/CA/NCI NIH HHS/United States
- CA119347/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous