Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb;77(4):292-8.
doi: 10.1038/ki.2009.466. Epub 2009 Dec 9.

FGF23-parathyroid interaction: implications in chronic kidney disease

Affiliations
Free article
Review

FGF23-parathyroid interaction: implications in chronic kidney disease

Hirotaka Komaba et al. Kidney Int. 2010 Feb.
Free article

Abstract

Over the past few years there have been considerable advances in our understanding of the physiological regulation of mineral homeostasis. One of the most important breakthroughs is the identification of fibroblastic growth factor 23 (FGF23) and its role as a key regulator of phosphate and 1,25-dihydroxyvitamin D metabolism. FGF23 exerts its biological functions by binding to its cognate receptor in the presence of Klotho as a cofactor. FGF23 principally acts on the kidney to induce urinary phosphate excretion and suppresses 1,25-dihydroxyvitamin D synthesis, thereby indirectly modulating parathyroid hormone secretion. FGF23 also acts directly on the parathyroid to decrease parathyroid hormone synthesis and secretion. In patients with chronic kidney disease, FGF23 levels increase progressively to compensate for phosphate retention, but these elevated FGF23 levels fail to suppress the secretion of parathyroid hormone, particularly in the setting of uremia. Recent data suggest that this parathyroid resistance to FGF23 may be caused by decreased expression of Klotho-FGFR1 complex in hyperplastic parathyroid glands. This review summarizes recent insights into the role of FGF23 in mineral homeostasis and discusses the involvement of its direct and indirect interaction with the parathyroid gland, particularly focusing on the pathophysiology of secondary hyperparathyroidism in chronic kidney disease.

PubMed Disclaimer

LinkOut - more resources