Free Energy Calculations for DNA Near Surfaces Using an Ellipsoidal Geometry
- PMID: 20011625
- PMCID: PMC2790298
Free Energy Calculations for DNA Near Surfaces Using an Ellipsoidal Geometry
Abstract
The change in some thermodynamic quantities such as Gibbs' free energy, entropy and enthalpy of the binding of two DNA strands (forming a double helix), while one is tethered to a surface and are analytically calculated. These particles are submerged in an electrolytic solution; the ionic strength of the media allows the linearized version of the Poisson-Boltzmann equation (from the theory of the double layer interaction) to properly describe the interactions [13]. There is experimental and computational evidence that an ion penetrable ellipsoid is an adequate model for the single strand and the double helix [22-25]. The analytic solution provides simple calculations useful for DNA chip design. The predicted electrostatic effects suggest the feasibility of electronic control and detection of DNA hybridization in the fast growing area of DNA recognition.
Figures






Similar articles
-
Electrostatic free energy of the DNA double helix in counterion condensation theory.Biophys Chem. 2002 Dec 10;101-102:461-73. doi: 10.1016/s0301-4622(02)00162-x. Biophys Chem. 2002. PMID: 12488020
-
Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.J Biomol Struct Dyn. 2002 Oct;20(2):275-90. doi: 10.1080/07391102.2002.10506843. J Biomol Struct Dyn. 2002. PMID: 12354079
-
Comparing the Predictions of the Nonlinear Poisson-Boltzmann Equation and the Ion Size-Modified Poisson-Boltzmann Equation for a Low-Dielectric Charged Spherical Cavity in an Aqueous Salt Solution.J Chem Theory Comput. 2010 Dec 14;6(12):3631-3639. doi: 10.1021/ct1002785. Epub 2010 Nov 19. J Chem Theory Comput. 2010. PMID: 22723750 Free PMC article.
-
Interpreting protein/DNA interactions: distinguishing specific from non-specific and electrostatic from non-electrostatic components.Nucleic Acids Res. 2011 Apr;39(7):2483-91. doi: 10.1093/nar/gkq984. Epub 2010 Nov 10. Nucleic Acids Res. 2011. PMID: 21071403 Free PMC article. Review.
-
Statistical Chemical Thermodynamics and Energetic Behavior of Counting: Gibbs' Theory Revisited.J Chem Theory Comput. 2022 Nov 8;18(11):6421-6436. doi: 10.1021/acs.jctc.2c00783. Epub 2022 Oct 27. J Chem Theory Comput. 2022. PMID: 36301102 Review.
Cited by
-
Fast Spectral Collocation Method for Surface Integral Equations of Potential Problems in a Spheroid.Commun Comput Phys. 2009;6:625-638. Commun Comput Phys. 2009. PMID: 20414359 Free PMC article.
-
Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations.SIAM Rev Soc Ind Appl Math. 2011 Nov 7;53(4):683-720. doi: 10.1137/090774288. SIAM Rev Soc Ind Appl Math. 2011. PMID: 23745011 Free PMC article.
-
Phage-like packing structures with mean field sequence dependence.J Comput Chem. 2017 Jun 5;38(15):1191-1197. doi: 10.1002/jcc.24727. Epub 2017 Mar 27. J Comput Chem. 2017. PMID: 28349552 Free PMC article.
-
Communication: Origin of the contributions to DNA structure in phages.J Chem Phys. 2013 Feb 21;138(7):071103. doi: 10.1063/1.4791708. J Chem Phys. 2013. PMID: 23444988 Free PMC article.
-
Image Charge Methods for a Three-Dielectric-Layer Hybrid Solvation Model of Biomolecules.Commun Comput Phys. 2009 Nov;6(5):955-977. doi: 10.4208/cicp.2009.v6.p955. Commun Comput Phys. 2009. PMID: 20556225 Free PMC article.
References
-
- Hsu JP, Liu BT. J Colloid Interf Sci. 1996;183:214–122.
-
- Hsu JP, Kim S. J Colloid Interf Sci. 1996;175:785–788.
-
- Hsu JP, Liu BT. J Colloid Interf Sci. 1997;190:371–379. - PubMed
-
- Aoi T. J Phys Soc Japan. 1954;10:130–141.
-
- Ohshima H, Kondo T. J Colloid Interf Sci. 1993;155:499–505.
Grants and funding
LinkOut - more resources
Full Text Sources