Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;28(1-3):252-61.
doi: 10.1159/000158870.

Spatial and temporal resolution of serotonin-induced changes in intracellular calcium in a cultured arterial smooth muscle cell line

Affiliations

Spatial and temporal resolution of serotonin-induced changes in intracellular calcium in a cultured arterial smooth muscle cell line

W F Goldman. Blood Vessels. 1991.

Abstract

Ca2+ transients (1-2 microM) evoked by serotonin (5-HT) in cultured A7r5 cells were studied using fura-2 and digital imaging microscopy. Fura-2 was introduced into cells either by incubation with its acetoxymethyl ester analogue fura-2/AM or by transient ATP-induced permeabilization of the sarcolemma such that the free fura-2 entered the cell directly. The distribution of cytoplasmic Ca2+ in unstimulated cells loaded by the former method was heterogeneous, reflecting, in part, separate pools of Ca2+ in the cytosol and sarcoplasmic reticulum (SR). In contrast, the distribution of Ca2+ was uniform in cells loaded with fura-2 by transient permeabilization; this reflected the restriction of fura-2 to the cytosol. Average Ca2+ in these cells was substantially lower than that in fura-2/AM-loaded cells, because SR Ca2+ influences the fura-2 signal from fura-2/AM-loaded cells, but not from cells loaded with free fura-2. The differences in the Ca2+ distribution measured by the two loading methods were also evident during the course of 5-HT-evoked Ca2+ transients. Spatial and temporal resolution of the rising phase of 5-HT-evoked Ca2+ transients in fura-2/AM-loaded cells revealed that the onset of the Ca2+ transients was first manifested as small regions of elevated Ca2+ that subsequently expanded until peak apparent intracellular Ca2+ levels were present in virtually all of the nonnuclear regions of the cells. The rate of rise of Ca2+ varied in different cell regions with the nucleus responding the slowest.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources