Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes
- PMID: 20014860
- PMCID: PMC2870931
- DOI: 10.1021/pr900927y
Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes
Abstract
In-depth, reproducible coverage of complex proteomes is challenging because the complexity of tryptic digests subjected to LC-MS/MS analysis frequently exceeds mass spectrometer analytical capacity, which results in undersampling of data. In this study, we used cancer cell lysates to systematically compare the commonly used GeLC-MS/MS (1-D protein + 1-D peptide separation) method using four repetitive injections (2-D/repetitive) with a 3-D method that included solution isoelectric focusing and involved an equal number of LC-MS/MS runs. The 3-D method detected substantially more unique peptides and proteins, including higher numbers of unique peptides from low-abundance proteins, demonstrating that additional fractionation at the protein level is more effective than repetitive analyses at overcoming LC-MS/MS undersampling. Importantly, more than 90% of the 2-D/repetitive protein identifications were found in the 3-D method data in a direct protein level comparison, and the reproducibility between data sets increased to greater than 96% when factors such as database redundancy and use of rigid scoring thresholds were considered. Hence, high reproducibility of complex proteomes, such as human cancer cell lysates, readily can be achieved when using multidimensional separation methods with good depth of analysis.
Figures






Similar articles
-
Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation.J Proteome Res. 2010 Oct 1;9(10):5461-72. doi: 10.1021/pr1007015. J Proteome Res. 2010. PMID: 20731415 Free PMC article.
-
Enhanced characterization of complex proteomic samples using LC-MALDI MS/MS: exclusion of redundant peptides from MS/MS analysis in replicate runs.Anal Chem. 2005 Dec 1;77(23):7816-25. doi: 10.1021/ac050956y. Anal Chem. 2005. PMID: 16316193
-
Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.Anaerobe. 2014 Oct;29:59-67. doi: 10.1016/j.anaerobe.2013.11.009. Epub 2013 Dec 3. Anaerobe. 2014. PMID: 24309213
-
Equivalence of protein inventories obtained from formalin-fixed paraffin-embedded and frozen tissue in multidimensional liquid chromatography-tandem mass spectrometry shotgun proteomic analysis.Mol Cell Proteomics. 2009 Aug;8(8):1988-98. doi: 10.1074/mcp.M800518-MCP200. Epub 2009 May 24. Mol Cell Proteomics. 2009. PMID: 19467989 Free PMC article.
-
Proteomics technologies for the global identification and quantification of proteins.Adv Protein Chem Struct Biol. 2010;80:1-44. doi: 10.1016/B978-0-12-381264-3.00001-1. Adv Protein Chem Struct Biol. 2010. PMID: 21109216 Review.
Cited by
-
Proteomic technologies for the discovery of type 1 diabetes biomarkers.J Diabetes Sci Technol. 2010 Jul 1;4(4):993-1002. doi: 10.1177/193229681000400431. J Diabetes Sci Technol. 2010. PMID: 20663466 Free PMC article.
-
Practical and Efficient Searching in Proteomics: A Cross Engine Comparison.Webmedcentral. 2013 Oct 1;4(10):WMCPLS0052. doi: 10.9754/journal.wplus.2013.0052. Webmedcentral. 2013. PMID: 25346847 Free PMC article.
-
A label-free proteome analysis strategy for identifying quantitative changes in erythrocyte membranes induced by red cell disorders.J Proteomics. 2012 Dec 5;76 Spec No.(0 0):194-202. doi: 10.1016/j.jprot.2012.08.010. Epub 2012 Aug 29. J Proteomics. 2012. PMID: 22954596 Free PMC article. Clinical Trial.
-
The Escherichia coli phosphotyrosine proteome relates to core pathways and virulence.PLoS Pathog. 2013;9(6):e1003403. doi: 10.1371/journal.ppat.1003403. Epub 2013 Jun 13. PLoS Pathog. 2013. PMID: 23785281 Free PMC article.
-
Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 1. Preparation of more than 4000 native protein maps.Electrophoresis. 2015 Aug;36(15):1711-23. doi: 10.1002/elps.201400573. Epub 2015 Jun 17. Electrophoresis. 2015. PMID: 25931155 Free PMC article.
References
-
- Cravatt B. F.; Simon G. M.; Yates J. R. III. The biological impact of mass-spectrometry-based proteomics. Nature 2007, 450 (7172), 991–1000. - PubMed
-
- Pasini E. M.; Kirkegaard M.; Salerno D.; Mortensen P.; Mann M.; Thomas A. W. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell. Mol. Cell. Proteomics 2008, 7 (7), 1317–30. - PubMed
-
- Dieguez-Acuna F. J.; Gerber S. A.; Kodama S.; Elias J. E.; Beausoleil S. A.; Faustman D.; Gygi S. P. Characterization of mouse spleen cells by subtractive proteomics. Mol. Cell. Proteomics 2005, 4 (10), 1459–70. - PubMed
-
- Omenn G. S.; States D. J.; Adamski M.; Blackwell T. W.; Menon R.; Hermjakob H.; Apweiler R.; Haab B. B.; Simpson R. J.; Eddes J. S.; Kapp E. A.; Moritz R. L.; Chan D. W.; Rai A. J.; Admon A.; Aebersold R.; Eng J.; Hancock W. S.; Hefta S. A.; Meyer H.; Paik Y. K.; Yoo J. S.; Ping P.; Pounds J.; Adkins J.; Qian X.; Wang R.; Wasinger V.; Wu C. Y.; Zhao X.; Zeng R.; Archakov A.; Tsugita A.; Beer I.; Pandey A.; Pisano M.; Andrews P.; Tammen H.; Speicher D. W.; Hanash S. M. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005, 5 (13), 3226–45. - PubMed
-
- Chen E. I.; Hewel J.; Felding-Habermann B.; Yates J. R. III. Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol. Cell. Proteomics 2006, 5 (1), 53–6. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials