Quantum coherence enabled determination of the energy landscape in light-harvesting complex II
- PMID: 20014871
- DOI: 10.1021/jp908300c
Quantum coherence enabled determination of the energy landscape in light-harvesting complex II
Abstract
The near-unity efficiency of energy transfer in photosynthesis makes photosynthetic light-harvesting complexes a promising avenue for developing new renewable energy technologies. Knowledge of the energy landscape of these complexes is essential in understanding their function, but its experimental determination has proven elusive. Here, the observation of quantum coherence using two-dimensional electronic spectroscopy is employed to directly measure the 14 lowest electronic energy levels in light-harvesting complex II (LHCII), the most abundant antenna complex in plants containing approximately 50% of the world's chlorophyll. We observe that the electronically excited states are relatively evenly distributed, highlighting an important design principle of photosynthetic complexes that explains the observed ultrafast intracomplex energy transfer in LHCII.
Similar articles
-
Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy.J Phys Chem B. 2009 Nov 19;113(46):15352-63. doi: 10.1021/jp9066586. J Phys Chem B. 2009. PMID: 19856954
-
Functional architecture of the major light-harvesting complex from higher plants.J Mol Biol. 2001 Dec 14;314(5):1157-66. doi: 10.1006/jmbi.2000.5179. J Mol Biol. 2001. PMID: 11743731
-
Quantum mechanical calculations of xanthophyll-chlorophyll electronic coupling in the light-harvesting antenna of photosystem II of higher plants.J Phys Chem B. 2013 Jun 27;117(25):7605-14. doi: 10.1021/jp4025848. Epub 2013 Jun 14. J Phys Chem B. 2013. PMID: 23697375
-
Photosynthetic acclimation: structural reorganisation of light harvesting antenna--role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins.FEBS J. 2008 Mar;275(6):1056-68. doi: 10.1111/j.1742-4658.2008.06262.x. FEBS J. 2008. PMID: 18318833 Review.
-
Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.Phys Chem Chem Phys. 2007 Jun 21;9(23):2917-31. doi: 10.1039/b703028b. Epub 2007 Apr 25. Phys Chem Chem Phys. 2007. PMID: 17551615 Review.
Cited by
-
Elucidation of the timescales and origins of quantum electronic coherence in LHCII.Nat Chem. 2012 Mar 25;4(5):389-95. doi: 10.1038/nchem.1303. Nat Chem. 2012. PMID: 22522259
-
Quantum transport in the FMO photosynthetic light-harvesting complex.J Biol Phys. 2017 Jun;43(2):239-245. doi: 10.1007/s10867-017-9449-4. Epub 2017 Apr 4. J Biol Phys. 2017. PMID: 28378262 Free PMC article.
-
Direct evidence of quantum transport in photosynthetic light-harvesting complexes.Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20908-12. doi: 10.1073/pnas.1105234108. Epub 2011 Dec 13. Proc Natl Acad Sci U S A. 2011. PMID: 22167798 Free PMC article.
-
Role of quantum coherence in shaping the line shape of an exciton interacting with a spatially and temporally correlated bath.J Chem Phys. 2017 May 21;146(19):194902. doi: 10.1063/1.4983223. J Chem Phys. 2017. PMID: 28527457 Free PMC article.
-
Development of Molecular Dynamics Parameters and Theoretical Analysis of Excitonic and Optical Properties in the Light-Harvesting Complex II.J Chem Theory Comput. 2025 Jan 14;21(1):413-427. doi: 10.1021/acs.jctc.4c01214. Epub 2024 Dec 20. J Chem Theory Comput. 2025. PMID: 39705720 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources