Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;17(5):412-22.
doi: 10.2174/092986710790226147.

11beta-hydroxysteroid dehydrogenase type 1 inhibitors as promising therapeutic drugs for diabetes: status and development

Affiliations
Review

11beta-hydroxysteroid dehydrogenase type 1 inhibitors as promising therapeutic drugs for diabetes: status and development

R Ge et al. Curr Med Chem. 2010.

Abstract

Glucocorticoids (GC) play a fundamental role in controlling physiologic homeostasis and, when present in excess, can have a detrimental impact on glucose control, blood pressure and lipid levels. The oxidoreductase 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) mainly catalyzes the intracellular regeneration of active GCs (cortisol, corticosterone) from inert inactive 11-keto forms (cortisone) in liver, adipose tissue and brain, amplifying local GC action. Multiple lines of evidence have indicated that 11beta-HSD1-mediated intracellular cortisol production may have a pathogenic role in type 2 diabetes and its co-morbidities. The 11beta-HSD1 becomes a novel target for anti-type 2 diabetes drug developments, and inhibition of 11beta-HSD1 offers a potential therapy to attenuate the type 2 diabetes. In the past several years, a lot of 11beta-HSD1 inhibitors have been designed, synthesized, screened and discovered. Lowering intracellular glucocorticoid concentrations through administration of small molecule 11beta-HSD1 selective inhibitors, significantly attenuates the signs and symptoms of disease in preclinical animal models and clinical trials of diabetes and metabolic syndrome. Among published inhibitors, DIO-902 from DiObex Inc. and INCB13739 from Incyte Inc. are now being investigated under Phase 2B clinical trials. However, the selectivity of current selective 11beta-HSD1 inhibitors has been just focused on the difference between 11beta-HSD1 and 11beta-HSD2. They inhibit the bi-directional activities of 11beta-HSD1, both 11beta-HSD1 reductase (major) and oxidase (minor). In our lab, we have recently found novel chemicals that not only inhibit 11beta-HSD1 reductase activity but also increase its oxidase activity without inhibition against 11beta-HSD2. We propose that this dual modulation on 11beta-HSD1 may provide a better therapeutic strategy for type 2 diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms