Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;277(2):501-10.
doi: 10.1111/j.1742-4658.2009.07506.x. Epub 2009 Dec 15.

Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus

Affiliations
Free article

Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus

Takeshi Ikeda et al. FEBS J. 2010 Jan.
Free article

Abstract

Pyruvate: ferredoxin oxidoreductase (POR; EC 1.2.7.1) catalyzes the thiamine pyrophosphate-dependent oxidative decarboxylation of pyruvate to form acetyl-CoA and CO(2). The thermophilic, obligate chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates CO(2) via the reductive tricarboxylic acid cycle. In this cycle, POR acts as pyruvate synthase catalyzing the reverse reaction (i.e. reductive carboxylation of acetyl-CoA) to form pyruvate. The pyruvate synthesis reaction catalyzed by POR is an energetically unfavorable reaction and requires a strong reductant. Moreover, the reducing equivalents must be supplied via its physiological electron mediator, a small iron-sulfur protein ferredoxin. Therefore, the reaction is difficult to demonstrate in vitro and the reaction mechanism has been poorly understood. In the present study, we coupled the decarboxylation of 2-oxoglutarate catalyzed by 2-oxoglutarate: ferredoxin oxidoreductase (EC 1.2.7.3), which generates sufficiently low-potential electrons to reduce ferredoxin, to drive the energy-demanding pyruvate synthesis by POR. We demonstrate that H. thermophilus POR catalyzes pyruvate synthesis from acetyl-CoA and CO(2), confirming the operation of the reductive tricarboxylic acid cycle in this bacterium. We also measured the electron paramagnetic resonance spectra of the POR intermediates in both the forward and reverse reactions, and demonstrate the intermediacy of a 2-(1-hydroxyethyl)- or 2-(1-hydroxyethylidene)-thiamine pyrophosphate radical in both reactions. The reaction mechanism of the reductive carboxylation of acetyl-CoA is also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources