Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 14;4(12):e8194.
doi: 10.1371/journal.pone.0008194.

TGF-beta and IL-10 production by HIV-specific CD8+ T cells is regulated by CTLA-4 signaling on CD4+ T cells

Affiliations

TGF-beta and IL-10 production by HIV-specific CD8+ T cells is regulated by CTLA-4 signaling on CD4+ T cells

Mohamed Elrefaei et al. PLoS One. .

Abstract

Immune dysregulation in HIV-1 infection is associated with increased expression of inhibitory molecules such as CTLA-4, TGF-beta, and IL-10. In this study we examined one potential mechanism for regulating TGF-beta and IL-10 expression by HIV-specific suppressor CD8+ T cells. No overlap between TGF-beta, IL-10, and IFN-gamma cytokine production by HIV-specific CD8+ T cells was observed. TGF-beta positive and IL-10 positive cells were FOXP3 negative, CD25 negative, and displayed a heterogeneous surface expression of CD127. TGF-beta and IL-10 positive CD8+ T cells did not express CTLA-4. Nevertheless, CTLA-4 blockade resulted in a significant decrease in HIV-specific TGF-beta positive and IL-10 positive CD8+ T cell responses, and a concomitant increase in HIV-specific IFN-gamma positive CD8+ T cell responses. Depletion of CD4+ T cells abrogated the impact of CTLA-4 on HIV-specific TGF-beta positive and IL-10 positive CD8+ T cells. Our study suggests that CTLA-4 Signaling on CD4+ T cells regulates the inhibitory functions of the HIV-specific suppressor CD8+ T cells.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. TGF-β positive, IL-10 positive, and IFN-γ positive HIV-specific CD8+ T cell populations are distinct.
PBMC were stimulated with HIV peptides then stained with anti-IFN-γ FITC, anti-TGF-β PE, anti-CD3 AmCyan, anti-CD4 PerCP Cy5.5, and anti-CD8 PE Cy7, anti-IL-10 APC, and analyzed by flow cytometry. Samples were first gated on the CD3+/CD8+ lymphocyte population then the percent of TGF-β, IFN-γ, and IL-10 positive CD8+ T cells were determined. (A) Data from individuals with significant cytokine expression and analysis were performed by Mann-Whitney U test. (B) Representative plots of the number of HIV-specific CD8+ T cells expressing TGF-β, IFN-γ, and IL-10 after subtraction of the back ground values.
Figure 2
Figure 2. Analysis of regulatory surface markers expression by HIV-specific TGF-β positive CD8+ T cells.
PBMC were stimulated with HIV peptides, then stained for various memory and regulatory markers and the percentage of TGF-β positive CD8+ T cells was determined by flow cytometry. Samples were first gated on the CD3+/CD8+ lymphocyte population and then the percentages of TGF-β positive cells were determined and the extent of FOXP3, CD127, CD25, and CD27 expression was also examined. Gating was performed using the fluorescence-minus-one (FMO) control for each marker. Representative plots of the phenotype of the HIV-specific CD8+ T cells expressing TGF-β. The values marked with an asterisk represent the fraction of TGF-β positive cells that express FOXP3, CD127, CD25, or CD27 over the total number of TGF-β positive cells (equivalent to 100%).
Figure 3
Figure 3. CTLA-4 blockade decreases TGF-β and IL-10 expression by HIV-specific CD8+ T Cells.
PBMC (n = 6) were stimulated with HIV peptides in the presence of anti-CTLA4 (or isotype control), then stained with anti-IFN-γ FITC, anti-TGF-β PE, anti-IL-10 APC, anti-CD3 AmCyan, anti-CD4 PerCP CY5.5, anti-CD8 PE CY7, and analyzed by flow cytomerty. Samples were first gated on the CD3+/CD8+ lymphocyte population then the percent of TGF-β, IL-10, and IFN-γ positive cells were determined. Results were expressed as percent of HIV-specific CD8+ T cells expressing TGF-β, IL-10, or IFN-γ after subtraction of the back ground. (A) Representative plots of HIV-specific CD8+ T cells expressing TGF-β, IL-10, or IFN-γ in the presence or absence of anti-CTLA-4. (B-D) Dashed line represents the cutoff for significant TGF-β (B), IL-10 (C), and IFN-γ (D) expression. Percentages in between brackets are median values. The two dots joined by a line represent the values obtained from the same individual and analysis was performed by paired t-test.
Figure 4
Figure 4. HIV-specific TGF-β and IL-10 positive CD8+ T cells are CTLA-4 negative.
PBMC were stimulated with HIV peptides then stained with anti-TGF-β PE (or IL-10 PE), anti-CD3 AmCyan, anti-CD4 PerCP Cy5.5, anti-CD8 PE Cy7, anti-CTLA-4 APC, and analyzed by flow cytometry. Gating on the CTLA-4 positive cells was performed using the fluorescence-minus-one (FMO) control for CTLA-4. (A) Representative plots of samples that were first gated on the CD3+/CD4+ and CD3+/CD8+ lymphocyte population and then the percentages of CTLA-4 positive cells were determined. (B) Representative plots of samples that were first gated on the CD3+/CD8+ lymphocyte population and then the percent of TGF-β and IL-10 positive cells that express CTLA-4 was determined after subtraction of the back ground values. The values marked with an asterisk represent the fraction of TGF-β (or IL-10) positive cells that express CTLA-4 over the total number of TGF-β (or IL-10) positive cells (equivalent to 100%). Plots are from three independent experiments yielding similar results.
Figure 5
Figure 5. Removal of CD4+ T cells abrogates the effects of CTLA-4 blockade on HIV-specific CD8+ T Cells.
PBMC (or CD4 negative PBMC) were stimulated with HIV peptides in the presence of anti-CTLA4 (or isotype control), then stained with anti-IFN-γ FITC, anti-TGF-β PE, IL-10 APC, anti-CD3 Am Cyan, anti-CD4 PerCP CY5.5, anti-CD8 PE CY7, and analyzed by flow cytomerty. Samples were first gated on the CD3+/CD8+ lymphocyte population then the percent of TGF-β, IL-10, and IFN-γ positive cells were determined. Results were expressed as percent of HIV-specific CD8+ T cells expressing TGF-β, IL-10, or IFN-γ after subtraction of the back ground. Representative plots of (A) Gag and (B) Nef-specific CD8+ T cells expressing TGF-β, IL-10, or IFN-γ in the presence or absence of anti-CTLA-4. Data plots shown are representative of three volunteers examined in three independent experiments yielding similar results.

Similar articles

Cited by

References

    1. Scotto L, Naiyer AJ, Galluzzo S, Rossi P, Manavalan JS, et al. Overlap between molecular markers expressed by naturally occurring CD4+CD25+ regulatory T cells and antigen specific CD4+CD25+ and CD8+CD28- T suppressor cells. Hum Immunol. 2004;65:1297–306. - PubMed
    1. Elrefaei M, Ventura FL, Baker CA, Clark R, Bangsberg DR, et al. HIV-specific IL-10-positive CD8+ T cells suppress cytolysis and IL-2 production by CD8+ T cells. J Immunol. 2007;178:3265–71. - PubMed
    1. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol. 2001;167:1245–53. - PubMed
    1. Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood. 2003;102:4107–14. - PubMed
    1. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med. 2002;196:1335–46. - PMC - PubMed

Publication types

MeSH terms