Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 17:4:51.
doi: 10.1186/1750-1326-4-51.

Acute dosing of latrepirdine (Dimebon), a possible Alzheimer therapeutic, elevates extracellular amyloid-beta levels in vitro and in vivo

Affiliations

Acute dosing of latrepirdine (Dimebon), a possible Alzheimer therapeutic, elevates extracellular amyloid-beta levels in vitro and in vivo

John W Steele et al. Mol Neurodegener. .

Abstract

Background: Recent reports suggest that latrepirdine (Dimebon, dimebolin), a retired Russian antihistamine, improves cognitive function in aged rodents and in patients with mild to moderate Alzheimer's disease (AD). However, the mechanism(s) underlying this benefit remain elusive. AD is characterized by extracellular accumulation of the amyloid-beta (Abeta) peptide in the brain, and Abeta-lowering drugs are currently among the most popular anti-amyloid agents under development for the treatment of AD. In the current study, we assessed the effect of acute dosing of latrepirdine on levels of extracellular Abeta using in vitro and in vivo experimental systems.

Results: We evaluated extracellular levels of Abeta in three experimental systems, under basal conditions and after treatment with latrepirdine. Mouse N2a neuroblastoma cells overexpressing Swedish APP were incubated for 6 hr in the presence of either vehicle or vehicle + latrepirdine (500pM-5 muM). Synaptoneurosomes were isolated from TgCRND8 mutant APP-overexpressing transgenic mice and incubated for 0 to 10 min in the absence or presence of latrepirdine (1 muM or 10 muM). Drug-naïve Tg2576 Swedish mutant APP overexpressing transgenic mice received a single intraperitoneal injection of either vehicle or vehicle + latrepirdine (3.5 mg/kg). Picomolar to nanomolar concentrations of acutely administered latrepirdine increased the extracellular concentration of Abeta in the conditioned media from Swedish mutant APP-overexpressing N2a cells by up to 64% (p = 0.01), while a clinically relevant acute dose of latrepirdine administered i.p. led to an increase in the interstitial fluid of freely moving APP transgenic mice by up to 40% (p = 0.01). Reconstitution of membrane protein trafficking and processing is frequently inefficient, and, consistent with this interpretation, latrepirdine treatment of isolated TgCRND8 synaptoneurosomes involved higher concentrations of drug (1-10 muM) and led to more modest increases in extracellular Abeta(x-42 )levels (+10%; p = 0.001); of note, however, was the observation that extracellular Abeta(x-40 )levels did not change.

Conclusions: Here, we report the surprising association of acute latrepirdine dosing with elevated levels of extracellular Abeta as measured in three independent neuron-related or neuron-derived systems, including the hippocampus of freely moving Tg2576 mice. Given the reported association of chronic latrepirdine treatment with improvement in cognitive function, the effects of chronic latrepirdine treatment on extracellular Abeta levels must now be determined.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison of latrepirdine 1D NMR proton spectra in DMSO from two sources. Latrepirdine was custom synthesized by either Nanosyn Inc or SinoChemexper and purity was determined to be ~97.3% or >99.0%, respectively. 1D NMR proton spectra are compared here for latrepirdine synthesized by SinoChemexper (top) or Nanosyn (bottom, reprinted with permission from Wu et al, 2008 [16]). Aliquots of latrepirdine from both sources were tested in each protocol. Identical effects were observed regardless of source of compound, and data were pooled for overall analysis.
Figure 2
Figure 2
Effect of latrepirdine on the levels of APP metabolites from cell lysates and conditioned media of mouse N2a cells. Cells were treated for 6 hours in the presence of vehicle or increasing concentrations of latrepirdine (as labeled). (a) Representative western blot of total intracellular and secreted metabolites of APP from at least 3 independent experiments, each performed in duplicate. (b) Quantification of western blot band densitometry represented as mean percent of vehicle +/- S.E.M. 5 nM latrepirdine produced an approximately half-maximal ~37% increase (SD = 0.33, t(10) = 2.75, p = 0.02), and 500 nM produced a maximal significant ~64% increase (SD = 0.49, t(10) = 3.16, p = 0.01) in extracellular Aβ compared to vehicle. The highest concentration (5 μM) also caused a significant ~59% increase (SD = 0.52, t(10) = 2.78, p = 0.02) in extracellular Aβ levels, and an increase in extracellular Aβ levels was observed with 50 nM latrepirdine, which approached significance on a two-tailed test (SD = 0.54, t(4) = 2.62, p = 0.059). Incubation with 5 nM or 500 nM latrepirdine resulted in a significant ~34% (SD = 0.35, t(10) = 2.33, p = 0.04) and ~27% (SD = 0.14, t(10) = 4.87, p = 0.0006) increase in sAPPα accumulation, respectively, in conditioned media compared to vehicle. An increase in extracellular sAPPα levels was observed with 50 nM latrepirdine, which approached significance on a two-tailed test (SD = 0.53, t(4) = 2.31, p = 0.081). No significant increases in sAPPα levels were distinguished between vehicle and either 500 pM or 5 μM latrepirdine. No significant accumulation of holoAPP of APP-CTFs (C83-CTF or C99-CTF) was observed following 6 h incubation in the absence (vehicle) or presence of varying concentrations of latrepirdine (as indicated). (c) Vehicle and all latrepirdine concentrations were indistinguishable by mean Aβx-42/Aβx-40 ratio, quantified by Aβ species-specific sandwich ELISA (mean Aβx-42/Aβx-40, n = 3 independent experiments, each performed in duplicate). Absolute Aβx-40 and Aβx-42 levels in the media were ~380-490 pM and ~14-20 pM, respectively. *Value represents a significant mean difference from vehicle by independent samples t-test, two-tailed α = 0.05, #p < 0.10; *p < 0.05; **p < 0.01.
Figure 3
Figure 3
Secreted Aβx-40 and Aβx-42 levels in the releasates of synaptoneurosomes following incubation with latrepirdine. Post-natal day 10-14 TgCRND8 cortical synaptoneurosomes were incubated 0 (baseline), 1, 3, 5, or 10 minutes in the presence of 1 μM (n = 5) or 10 μM (n = 6) latrepirdine. (a) 1 μM latrepirdine stimulates an increase in secretion of Aβx-42, but not Aβx-40, from isolated synaptoneurosomes following 3 minutes (SD = 0.06, t(4) = 2.81, p = 0.048) of incubation with the drug, and a decrease (~6%) is observed at 10 minutes (SD = 0.01, t(5) = 9.61, p = 0.0007), likely representing a depletion of available Aβx-42 (mean % baseline +/- S.E.M). (b) 10 μM latrepirdine stimulates an increase in secretion of Aβx-42, but not Aβx-40, following 1 (SD = 0.038, t(5) = 6.73, p = 0.001), 3 (SD = 0.028, t(5) = 7.35, p = 0.0007), and 5 (SD = 0.056, t(5) = 5.29, p = 0.0029) minutes of incubation with the drug (mean % baseline +/- S.E.M). (c) An immediate ~4.1% increase (SD = 0.13, t(5) = 3.205, p = 0.024) in Aβx-42/Aβx-40 ratio was observed following 1 minute of incubation with 10 μM latrepirdine (mean Aβx-42/Aβx-40). (Note: TgCRND8 mice generate ~50%/50% Aβx-42/Aβx-40 under normal conditions and the increase in Aβx-42/Aβx-40 ratio may be due to the large stimulation of Aβ secretion at this time point). *Value represents a significant mean difference between baseline and time-point by paired t-test, two-tailed α = 0.05, *p < 0.05, **p < 0.01.
Figure 4
Figure 4
Acute administration of latrepirdine increases ISF Aβx-40 levels 9-10 hours following treatment. A single i.p. treatment of latrepirdine (SD = 30.94, t(4) = 2.997, p = 0.04), but not vehicle (SD = 5.68, t(4) = 0.775, p = 0.48), produces an increase in ISF Aβx-40 levels from baseline at 9-10 hours post-treatment (a). This increase in ISF Aβx-40 level was also determined to be significantly higher than ISF Aβx-40 levels observed in vehicle treated animals at 9-10 hours post-treatment (SD = 30.94, t(5) = 3.31, p = 0.01; b). Data are represented as mean percent of baseline +/- S.E.M. *Value represents a significant difference as determined by paired samples t-test (a) or independent samples t-test (b), two-tailed α = 0.05, *p < 0.05.

Similar articles

Cited by

References

    1. Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest. 2005;115(5):1121–1129. - PMC - PubMed
    1. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8(1):79–84. doi: 10.1038/nn1372. - DOI - PubMed
    1. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–842. doi: 10.1038/nm1782. - DOI - PMC - PubMed
    1. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416(6880):535–539. doi: 10.1038/416535a. - DOI - PubMed
    1. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans. 2002;30(4):552–557. doi: 10.1042/BST0300552. - DOI - PubMed