Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 15;176(1-3):774-83.
doi: 10.1016/j.jhazmat.2009.11.102. Epub 2009 Nov 26.

Isotherm and kinetics study for acrylic acid removal using powdered activated carbon

Affiliations

Isotherm and kinetics study for acrylic acid removal using powdered activated carbon

Arvind Kumar et al. J Hazard Mater. .

Abstract

The potential of powdered activated carbon (PAC) for the adsorption of acrylic acid (AA) from aqueous solution was studied at the initial concentration (C(0)) in the range of 50-500 mg/l over the temperature range of 303-348 K. The equilibrium adsorption studies were carried out to evaluate the effect of adsorbent dosage and contact time, change in pH by adding adsorbents and the initial concentration. Langmuir, Freundlich and Redlich-Peterson (R-P) equilibrium isotherm models were tested to represent the data. Error functions were used to test their validity to fit of the adsorption data with the isotherm and kinetic models. The Freundlich isotherm equation is found to best represent the equilibrium separation data in the temperature range of 303-348 K. The maximum adsorption capacity of AA onto PAC was obtained as q(m)=36.23 mg/g with an optimum PAC dosage w=20 g/l at 303 K for C(0)=100 mg/l. The pseudo-second-order kinetics is found to represent the experimental AA-PAC data. The negative value of DeltaG(ad)(o) (-16.60 to -18.18 kJ/mol K) indicate the feasibility and spontaneity of the adsorption process.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources