Experimental observations of stress-driven grain boundary migration
- PMID: 20019286
- DOI: 10.1126/science.1178226
Experimental observations of stress-driven grain boundary migration
Abstract
In crystalline materials, plastic deformation occurs by the motion of dislocations, and the regions between individual crystallites, called grain boundaries, act as obstacles to dislocation motion. Grain boundaries are widely envisaged to be mechanically static structures, but this report outlines an experimental investigation of stress-driven grain boundary migration manifested as grain growth in nanocrystalline aluminum thin films. Specimens fabricated with specially designed stress and strain concentrators are used to uncover the relative importance of these parameters on grain growth. In contrast to traditional descriptions of grain boundaries as stationary obstacles to dislocation-based plasticity, the results of this study indicate that shear stresses drive grain boundaries to move in a manner consistent with recent molecular dynamics simulations and theoretical predictions of coupled grain boundary migration.
Similar articles
-
Grain boundary-mediated plasticity in nanocrystalline nickel.Science. 2004 Jul 30;305(5684):654-7. doi: 10.1126/science.1098741. Science. 2004. PMID: 15286368
-
Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.Nat Mater. 2004 Jan;3(1):43-7. doi: 10.1038/nmat1035. Epub 2003 Dec 14. Nat Mater. 2004. PMID: 14704784
-
Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films.Science. 2007 Mar 30;315(5820):1831-4. doi: 10.1126/science.1137580. Science. 2007. PMID: 17395826
-
Interactions between Dislocations and Boundaries during Deformation.Materials (Basel). 2021 Feb 21;14(4):1012. doi: 10.3390/ma14041012. Materials (Basel). 2021. PMID: 33669924 Free PMC article. Review.
-
A new approach to grain boundary engineering for nanocrystalline materials.Beilstein J Nanotechnol. 2016 Nov 25;7:1829-1849. doi: 10.3762/bjnano.7.176. eCollection 2016. Beilstein J Nanotechnol. 2016. PMID: 28144533 Free PMC article. Review.
Cited by
-
Twinning-like lattice reorientation without a crystallographic twinning plane.Nat Commun. 2014;5:3297. doi: 10.1038/ncomms4297. Nat Commun. 2014. PMID: 24522756 Free PMC article.
-
Bi-crystallographic lattice structure directs grain boundary motion under shear stress.Sci Rep. 2015 Aug 25;5:13441. doi: 10.1038/srep13441. Sci Rep. 2015. PMID: 26304553 Free PMC article.
-
Rejuvenation of plasticity via deformation graining in magnesium.Nat Commun. 2022 Feb 25;13(1):1060. doi: 10.1038/s41467-022-28688-9. Nat Commun. 2022. PMID: 35217663 Free PMC article.
-
Early deformation mechanisms in the shear affected region underneath a copper sliding contact.Nat Commun. 2020 Feb 11;11(1):839. doi: 10.1038/s41467-020-14640-2. Nat Commun. 2020. PMID: 32047144 Free PMC article.
-
The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale.Nanoscale Res Lett. 2011 Mar 1;6(1):186. doi: 10.1186/1556-276X-6-186. Nanoscale Res Lett. 2011. PMID: 21711704 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources