Distributed dynamical computation in neural circuits with propagating coherent activity patterns
- PMID: 20019807
- PMCID: PMC2787923
- DOI: 10.1371/journal.pcbi.1000611
Distributed dynamical computation in neural circuits with propagating coherent activity patterns
Abstract
Activity in neural circuits is spatiotemporally organized. Its spatial organization consists of multiple, localized coherent patterns, or patchy clusters. These patterns propagate across the circuits over time. This type of collective behavior has ubiquitously been observed, both in spontaneous activity and evoked responses; its function, however, has remained unclear. We construct a spatially extended, spiking neural circuit that generates emergent spatiotemporal activity patterns, thereby capturing some of the complexities of the patterns observed empirically. We elucidate what kind of fundamental function these patterns can serve by showing how they process information. As self-sustained objects, localized coherent patterns can signal information by propagating across the neural circuit. Computational operations occur when these emergent patterns interact, or collide with each other. The ongoing behaviors of these patterns naturally embody both distributed, parallel computation and cascaded logical operations. Such distributed computations enable the system to work in an inherently flexible and efficient way. Our work leads us to propose that propagating coherent activity patterns are the underlying primitives with which neural circuits carry out distributed dynamical computation.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
, and
): spatially localized patterns that lightly jitter around; (B) Type 2 (with parameters
and
): localized coherent patterns with long-range movements and complicated interactions. Each pattern is labeled by a distinct letter. At this time moment, the system has five spatially localized structures labeled from a to f, of which the center-of-mass positions are respectively: (5.1, 74.2), (39.7, 64.2), (9.3, 50.5), (27.3, 19.7), (15.1, 9.9), (67.2, 20.8). (C) Type 3 (with parameters
, and
): localized coherent structures with regular motion and regular overall features.
represents ‘A AND NOT B’. A, B, AB, BA,
and
are corresponding signals at the positions P1, Q1, P3, Q3, P4, and Q4.
, the two coherent Patterns a and b depicted in blue collide with each other. The output is a coherent Pattern c (red) which, at time
is positioned at P2, where it collides with Pattern d coming from a different direction. The dashed black lines show the trajectories of the propagating patterns. (B) Illustration of the cascaded logical operations. A, B, C, D are signals signifying the presence or absence of coherent activity patterns at time moments t1 and t2. Based on these signals, the logical operation occurring at t1 is located on the green dotted line, and the one at t2 is located on the black dotted line. The output signal from the operation at t1 that involves A and B is a signal C, C = A AND B, which acts as the input signal for the operation happening at t2, which also involves a signal D. The dashed arrows correspond to the situation that one of these signals is absent.
,
ms. The two black filled circles represent a pair of signals involved in one logical operation, and the two red filled circles represent the signals in another one. Each of these operations can produce ‘AND’, ‘AND NOT’ functions. The dashed arrows correspond to the situation that one of these signals is absent.
References
-
- Grillner S, Graybiel AM. Microcircuits: The interface between neurons and global brain function. Cambridge: MIT Press; 2006.
-
- Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:83–86. - PubMed
-
- Arieli A, Shoham D, Hildesheim R, Grinvald A. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J Neurophysiol. 1995;73:2072–2093. - PubMed
-
- Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425:954–956. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
