Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;21(8):2317-24.
doi: 10.1007/s10856-009-3965-0. Epub 2009 Dec 18.

Monitoring cellular behaviour using Raman spectroscopy for tissue engineering and regenerative medicine applications

Affiliations

Monitoring cellular behaviour using Raman spectroscopy for tissue engineering and regenerative medicine applications

A R Boyd et al. J Mater Sci Mater Med. 2010 Aug.

Abstract

Raman spectroscopy has been used to determine the chemical composition of materials for over 70 years. Recent spectacular advances in laser and CCD camera technology creating instruments with higher sensitivity and lower cost have initiated a strong resurgence in the technique, ranging from fundamental research to process control methodology. One such area of increased potential is in tissue engineering and regenerative medicine (TERM), where autologous cell culture, stem cell biology and growth of human cells on biomaterial scaffolds are of high importance. Traditional techniques for the in vitro analysis of biochemical cell processes involves cell techniques such as fixation, lysis or the use of radioactive or chemical labels which are time consuming and can involve the perpetuation of artefacts. Several studies have already shown the potential of Raman spectroscopy to provide useful information on key biochemical markers within cells, however, many of these studies have utilised micro- or confocal Raman to do this, which are not suited to the rapid and non-invasive monitoring of cells. For this study a versatile fit-for-purpose Raman spectrometer was used, employing a macro-sampling optical platform (laser spot size 100 mum at focus on the sample) to discriminate between different TERM relevant cell types and viable and non-viable cells. The results clearly show that the technique is capable of obtaining Raman spectra from live cells in a non-destructive, rapid and non-invasive manner, however, in these experiments it was not possible to discriminate between different cell lines. Despite this, notable differences were observed in the spectra obtained from viable and non-viable cells, showing significant changes in the spectral profiles of protein, DNA/RNA and lipid cell constituents after cell death. It is evident that the method employed here shows significant potential for further utilisation in TERM, providing data directly from live cells that fits within a quality assurance framework and provides the opportunity to analyse cells in a non-destructive manner.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Opt Express. 2004 Dec 13;12(25):6208-14 - PubMed
    1. Appl Spectrosc. 2006 Jan;60(1):1-8 - PubMed
    1. Anal Chem. 2004 Jun 1;76(11):3185-93 - PubMed
    1. Biopolymers. 2003;72(1):1-9 - PubMed
    1. Anal Biochem. 1983 Mar;129(2):305-9 - PubMed

Publication types

LinkOut - more resources