Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jun;1(2):162-70.
doi: 10.2174/1874467210801020162.

DNA polymerases and oxidative damage: friends or foes?

Affiliations
Review

DNA polymerases and oxidative damage: friends or foes?

A Amoroso et al. Curr Mol Pharmacol. 2008 Jun.

Abstract

DNA is modified by many mutagens, including reactive oxygen species (ROS). When ROS react with DNA, various kinds of modified base and/or sugar moieties are produced. One of the most important oxidative DNA lesions is 7,8-dihydro-8-oxoguanine (8-oxo-G). Contrary to normal deoxyguanosine, 8-oxo-G favors a syn conformation, enabling it to form a Hoogsteen base pair with adenine which resembles a normal Watson-Crick base pair in shape and geometry. As a consequence, most human DNA polymerases (pols) studied so far show significant error-prone bypass of 8-oxo-G. The 1,2-dihydro-2-oxoadenine (2-OH-A) is another common DNA lesion produced by ROS. 2-OH-A possesses significant mutagenic potential in living cells. When challenged with a 2-OH-A lesion on the template, DNA pols often misinsert G and C nucleotides, with various efficiencies depending upon the sequence context. We have recently shown that human DNA pol lambda is extremely efficient in performing error-free bypass of both 8-oxo-G and 2-OH-A lesions, and that its efficiency is positively modulated by the auxiliary factors proliferating cell nuclear antigen and replication protein A. In this review we will summarize the most recent advancements in the field of oxidative DNA damage tolerance with special emphasis on the pro- and anti-mutagenic roles of DNA pols and auxiliary proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types