Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 29;19(24):2102-7.
doi: 10.1016/j.cub.2009.10.075.

Shape and dynamics of tip-growing cells

Affiliations
Free article

Shape and dynamics of tip-growing cells

Otger Campàs et al. Curr Biol. .
Free article

Abstract

Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres [1-7]. Although it is undisputed that this requires a tight and simultaneous regulation of cell wall assembly and mechanics, previous theoretical studies on tip growth focused either on the mechanical behavior of the cell wall or on its assembly [8-14]. To study the interplay between growth and mechanics in shaping a walled cell, we examine the particularly simple geometry of tip-growing cells [1, 3, 15, 16], which elongate via the assembly and expansion of cell wall in the apical region of the cell. We describe the observed irreversible expansion of the cell wall during growth as the extension of an inhomogeneous viscous fluid shell under the action of turgor pressure, fed by a material source in the neighborhood of the growing tip. This allows us to determine theoretically the radius of the cell and its growth velocity in terms of the turgor pressure and the secretion rate and rheology of the cell wall material. We derive simple scaling laws for the geometry of the cell and find that a single dimensionless parameter, which characterizes the relative roles of cell wall assembly and expansion, is sufficient to explain the observed variability in shapes of tip-growing cells. More generally, our description provides a framework to understand cell growth and remodeling in plants (pollen tubes [17], root hairs, etc. [18]), fungi (hyphal growth [19, 20] and fission and budding yeast [3]), and some bacteria [21], in the context of both tip growth and diffuse growth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources