Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production
- PMID: 20023108
- PMCID: PMC2812987
- DOI: 10.1128/AEM.02112-09
Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production
Abstract
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Figures






Similar articles
-
Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila.Nat Biotechnol. 2006 Jun;24(6):673-9. doi: 10.1038/nbt1212. Epub 2006 May 14. Nat Biotechnol. 2006. PMID: 16699499
-
A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence.Cell Microbiol. 2010 Nov;12(11):1666-79. doi: 10.1111/j.1462-5822.2010.01501.x. Epub 2010 Aug 17. Cell Microbiol. 2010. PMID: 20597908
-
Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease.J Bacteriol. 2009 Mar;191(6):1910-23. doi: 10.1128/JB.01558-08. Epub 2008 Dec 29. J Bacteriol. 2009. PMID: 19114474 Free PMC article.
-
Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants.Int J Mol Sci. 2010 Dec 30;12(1):141-72. doi: 10.3390/ijms12010141. Int J Mol Sci. 2010. PMID: 21339982 Free PMC article. Review.
-
Lipopeptide families at the interface between pathogenic and beneficial Pseudomonas-plant interactions.Crit Rev Microbiol. 2020 Aug;46(4):397-419. doi: 10.1080/1040841X.2020.1794790. Epub 2020 Sep 4. Crit Rev Microbiol. 2020. PMID: 32885723 Review.
Cited by
-
Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules.Braz J Microbiol. 2013 Oct 30;44(2):623-31. doi: 10.1590/S1517-83822013000200043. eCollection 2013. Braz J Microbiol. 2013. PMID: 24294262 Free PMC article.
-
Structural rearrangement in an RsmA/CsrA ortholog of Pseudomonas aeruginosa creates a dimeric RNA-binding protein, RsmN.Structure. 2013 Sep 3;21(9):1659-71. doi: 10.1016/j.str.2013.07.007. Epub 2013 Aug 15. Structure. 2013. PMID: 23954502 Free PMC article.
-
Virulence of the Pseudomonas fluorescens clinical strain MFN1032 towards Dictyostelium discoideum and macrophages in relation with type III secretion system.BMC Microbiol. 2012 Sep 29;12:223. doi: 10.1186/1471-2180-12-223. BMC Microbiol. 2012. PMID: 23020706 Free PMC article.
-
Larval microbiota primes the Drosophila adult gustatory response.Nat Commun. 2024 Feb 13;15(1):1341. doi: 10.1038/s41467-024-45532-4. Nat Commun. 2024. PMID: 38351056 Free PMC article.
-
Genetic and functional characterization of cyclic lipopeptide white-line-inducing principle (WLIP) production by rice rhizosphere isolate Pseudomonas putida RW10S2.Appl Environ Microbiol. 2012 Jul;78(14):4826-34. doi: 10.1128/AEM.00335-12. Epub 2012 Apr 27. Appl Environ Microbiol. 2012. PMID: 22544260 Free PMC article.
References
-
- Alibaud, L., T. Kohler, A. Coudray, C. Prigent-Combaret, E. Bergeret, J. Perrin, M. Benghezal, C. Reimmann, Y. Gauthier, C. van Delden, I. Attree, M. O. Fauvarque, and P. Cosson. 2008. Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model. Cell. Microbiol. 10:729-740. - PubMed
-
- Andersen, J. B., B. Koch, T. H. Nielsen, D. Sorensen, M. Hansen, O. Nybroe, C. Christophersen, J. Sorensen, S. Molin, and M. Givskov. 2003. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149:37-46. - PubMed
-
- Baehler, E., P. de Werra, L. Y. Wick, M. Pechy-Tarr, S. Mathys, M. Maurhofer, and C. Keel. 2006. Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 19:313-329. - PubMed
-
- Balibar, C. J., F. H. Vaillancourt, and C. T. Walsh. 2005. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem. Biol. 12:1189-1200. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources