Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor
- PMID: 20023205
- PMCID: PMC3035506
- DOI: 10.1194/jlr.M004051
Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor
Abstract
TGR5 is a G protein-coupled receptor that is activated by bile acids, resulting in an increase in cAMP levels and the subsequent modulation of energy expenditure in brown adipose tissue and muscle. Therefore, the development of a TGR5-specific agonist could lead to the prevention and treatment of various metabolic disorders related to obesity. In the present study, we evaluated the ability of bile alcohols, which are structurally and physiologically similar to bile acids and are produced as the end products of cholesterol catabolism in evolutionarily primitive vertebrates, to act as TGR5 agonists. In a cell-based reporter assay and a cAMP production assay performed in vitro, most bile alcohols with a side chain containing hydroxyl group(s) were highly efficacious agonists for TGR5 comparable to its most potent ligand in the naturally occurring bile acid, lithocholic acid. However, the abilities of the bile alcohols to activate TGR5 varied with the position and number of the hydroxyl substituent in the side chain. Additionally, the conformation of the steroidal nucleus of bile alcohols is also important for its activity as a TGR5 agonist. Thus, we have provided new insights into the structure-activity relationships of bile alcohols as TGR5 agonists.
Figures






Similar articles
-
Structure-activity relationship of bile alcohols as human farnesoid X receptor agonist.Steroids. 2010 Jan;75(1):95-100. doi: 10.1016/j.steroids.2009.11.002. Epub 2009 Nov 12. Steroids. 2010. PMID: 19913569
-
The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach.Arch Pharm (Weinheim). 2025 Jan;358(1):e2400423. doi: 10.1002/ardp.202400423. Arch Pharm (Weinheim). 2025. PMID: 39801251 Free PMC article.
-
The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling.Mol Endocrinol. 2011 Jun;25(6):1066-71. doi: 10.1210/me.2010-0460. Epub 2011 Mar 31. Mol Endocrinol. 2011. PMID: 21454404 Free PMC article.
-
The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders.J Recept Signal Transduct Res. 2013 Aug;33(4):213-23. doi: 10.3109/10799893.2013.802805. Epub 2013 Jun 20. J Recept Signal Transduct Res. 2013. PMID: 23782454 Review.
-
Patented TGR5 modulators: a review (2006 - present).Expert Opin Ther Pat. 2012 Dec;22(12):1399-414. doi: 10.1517/13543776.2012.733000. Epub 2012 Oct 6. Expert Opin Ther Pat. 2012. PMID: 23039746 Review.
Cited by
-
Revisiting the Bacterial Phylum Composition in Metabolic Diseases Focused on Host Energy Metabolism.Diabetes Metab J. 2020 Oct;44(5):658-667. doi: 10.4093/dmj.2019.0220. Epub 2020 Jul 9. Diabetes Metab J. 2020. PMID: 32662252 Free PMC article. Review.
-
Pleiotropic functions of the organic solute transporter Ostα-Ostβ.Dig Dis. 2011;29(1):13-7. doi: 10.1159/000324123. Epub 2011 Jun 17. Dig Dis. 2011. PMID: 21691099 Free PMC article. Review.
-
The human gut microbiota: Metabolism and perspective in obesity.Gut Microbes. 2018 Jul 4;9(4):308-325. doi: 10.1080/19490976.2018.1465157. Epub 2018 May 24. Gut Microbes. 2018. PMID: 29667480 Free PMC article. Review.
-
Nonacidic Chemotype Possessing N-Acylated Piperidine Moiety as Potent Farnesoid X Receptor (FXR) Antagonists.ACS Med Chem Lett. 2018 Jan 4;9(2):78-83. doi: 10.1021/acsmedchemlett.7b00363. eCollection 2018 Feb 8. ACS Med Chem Lett. 2018. PMID: 29456791 Free PMC article.
-
Using nontargeted LC-MS metabolomics to identify the Association of Biomarkers in pig feces with feed efficiency.Porcine Health Manag. 2021 Jun 2;7(1):39. doi: 10.1186/s40813-021-00219-w. Porcine Health Manag. 2021. PMID: 34078468 Free PMC article.
References
-
- Wang H., Chen J., Hollister K., Sowers L. C., Forman B. M. 1999. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 3: 543–553. - PubMed
-
- Parks D. J., Blanchard S. G., Bledsoe R. K., Chandra G., Consler T. G., Kliewer S. A., Stimmel J. B., Willson T. M., Zavacki A. M., Moore D. D., et al. 1999. Bile acids: natural ligands for an orphan nuclear receptor. Science. 284: 1365–1368. - PubMed
-
- Makishima M., Okamoto A. Y., Repa J. J., Tu H., Learned R. M., Luk A., Hull M. V., Lustig K. D., Mangelsdorf D. J., Shan B. 1999. Identification of a nuclear receptor for bile acids. Science. 284: 1362–1365. - PubMed
-
- Everson G. T. 1987. Steady-state kinetics of serum bile acids in healthy human subjects: single and dual isotope techniques using stable isotopes and mass spectrometry. J. Lipid Res. 28: 238–252. - PubMed
-
- Ho K. J. 1976. Circadian distribution of bile acid in the enterohepatic circulatory system in hamsters. J. Lipid Res. 17: 600–604. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources