Integration column: biofunctional polymeric nanoparticles for spatio-temporal control of drug delivery and biomedical applications
- PMID: 20023754
- DOI: 10.1039/b907627c
Integration column: biofunctional polymeric nanoparticles for spatio-temporal control of drug delivery and biomedical applications
Abstract
Polymeric nanoparticle technology has evolved from drug carrier design to advanced multifunctional macromolecular structures. They enable drug delivery and release of a bioactive under spatio-temporal control rather than just passive release by a long-circulating carrier. As such, the carrier is enabling the biomolecule or the bioactive to carry out its designed biological function. Due to their small size nanoparticles may also induce perturbations of biological systems different from any other biomaterials, therefore opening up new biomedical applications as well as raising concerns about adverse effects.
Similar articles
-
Nanomedicine: sizing up targets with nanoparticles.Nat Nanotechnol. 2008 Jan;3(1):12-3. doi: 10.1038/nnano.2007.433. Nat Nanotechnol. 2008. PMID: 18654442 No abstract available.
-
Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model.Int J Pharm. 2009 Feb 9;367(1-2):169-78. doi: 10.1016/j.ijpharm.2008.09.017. Epub 2008 Sep 19. Int J Pharm. 2009. PMID: 18848609
-
Colloidal carrier integrating biomaterials for oral insulin delivery: Influence of component formulation on physicochemical and biological parameters.Acta Biomater. 2009 Sep;5(7):2475-84. doi: 10.1016/j.actbio.2009.03.007. Epub 2009 Mar 16. Acta Biomater. 2009. PMID: 19362890
-
Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications.Drug Discov Today. 2007 Aug;12(15-16):650-6. doi: 10.1016/j.drudis.2007.06.002. Epub 2007 Jul 31. Drug Discov Today. 2007. PMID: 17706547 Review.
-
Emerging nanomedicine opportunities with perfluorocarbon nanoparticles.Expert Rev Med Devices. 2007 Mar;4(2):137-45. doi: 10.1586/17434440.4.2.137. Expert Rev Med Devices. 2007. PMID: 17359221 Review.
Cited by
-
Triggered drug release from superhydrophobic meshes using high-intensity focused ultrasound.Adv Healthc Mater. 2013 Sep;2(9):1204-8. doi: 10.1002/adhm.201200381. Epub 2013 Apr 17. Adv Healthc Mater. 2013. PMID: 23592698 Free PMC article.
-
Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers.J Control Release. 2012 Apr 10;159(1):14-26. doi: 10.1016/j.jconrel.2011.11.031. Epub 2011 Dec 1. J Control Release. 2012. PMID: 22154931 Free PMC article. Review.
-
In vitro activity of Paclitaxel-loaded polymeric expansile nanoparticles in breast cancer cells.Biomacromolecules. 2013 Jun 10;14(6):2074-82. doi: 10.1021/bm400434h. Epub 2013 May 9. Biomacromolecules. 2013. PMID: 23617223 Free PMC article.
-
Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy.J Mater Sci Mater Med. 2015 Apr;26(4):165. doi: 10.1007/s10856-015-5498-z. Epub 2015 Mar 20. J Mater Sci Mater Med. 2015. PMID: 25791459
-
Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates.J Am Chem Soc. 2012 Feb 1;134(4):2016-9. doi: 10.1021/ja211148a. Epub 2012 Jan 18. J Am Chem Soc. 2012. PMID: 22279966 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials