Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr;74(4):625-32.
doi: 10.3171/jns.1991.74.4.0625.

A histological and flow cytometric study of dog brain endothelial cell injuries in delayed radiation necrosis

Affiliations

A histological and flow cytometric study of dog brain endothelial cell injuries in delayed radiation necrosis

N Yamaguchi et al. J Neurosurg. 1991 Apr.

Abstract

The pathogenesis of delayed cerebral radiation necrosis was studied histologically and biochemically in 25 dogs with special attention to vascular endothelial cell injuries. The dogs were sacrificed 3 to 30 months after irradiation with a single dose of 15 Gy to the head. Brain specimens were appropriately fixed for light and electron microscopic studies, and capillary endothelial cells were isolated for flow cytometric study. The endothelial cells were stained with acridine orange, then the cell ratios in the reproductive phase (S + G2 + M) were investigated with flow cytometry. Thereafter, Feulgen hydrolysis and computer analysis of the hydrolysis curves were performed to examine the qualitative changes in deoxyribonucleic acid (DNA) of endothelial cells after irradiation. Under light microscopy, spongy degeneration with small cell infiltration was observed, especially in the frontal white matter, at 6 months after irradiation. At 9 months, necrotic foci appeared and developed until 15 months after irradiation. Blood vessels around the necrotic area showed luminal narrowing with endothelial hyperplasia and proliferation. At 30 months, no fresh necrotic lesions were observed. Under electron microscopy, endothelial cells of capillaries and small vessels around the necrotic area showed an increase of pinocytosis, and in the nuclei there was an increase of infoldings and euchromatin. The cell ratios in the reproductive phase were 14.5% to 23.3% (maximum at 9 months) in the irradiated group compared to 6.4% in the control group. The rate constant of apurinic acid production, a parameter correlating with DNA transcriptional activity, was minimum at 3 months and maximum at 9 months after irradiation. The data suggest that impairment of the microcirculation plays an important role in the pathogenesis of delayed radiation necrosis, and that the time of necrosis occurrence closely correlates with the cell cycle of vascular endothelial cells.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources