Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 28:(48):10896-903.
doi: 10.1039/b917748p. Epub 2009 Nov 17.

Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach]+ and [ZnCl(bme-dach)]2Pd

Affiliations

Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach]+ and [ZnCl(bme-dach)]2Pd

Queite A de Paula et al. Dalton Trans. .

Abstract

The reaction between the complexes [MCl(L)]Cl(x) (L = 2,2',2''-terpyridine, terpy and dien, diethylenetriamine; M = Pd, x = 1; M = Au, x = 2) and [Zn(bme-dach)](2), an N(2)S(2)-Zn-thiolate bridged dimer used to mimic zinc finger protein sites, was studied by Electrospray Ionisation Mass Spectrometry and the structures of some of the products confirmed by X-ray crystallography. All reactions investigated in this work gave heteronuclear (Zn-thiolate)-metal products, the predominant species being the trinuclear dithiolate-bridged aggregate {[Zn(bme-dach)](2)M}(n+) (M = Pd, Au). X-Ray diffraction studies verified the molecular structure of [{ZnCl(bme-dach)}(2)Pd], and further confirmed that the zinc within the [Zn(bme-dach)](2) unit was retained within the N(2)S(2) binding site. The Zn-bound thiolates form stable thiolate bridges to Pd(2+) in a stair-step shape, held together by a planar PdS(4) center. In addition, both zinc atoms maintained penta-coordinate coordination with apical chloride ligands rather than the more commonly observed tetrahedral geometry. Further, [Pd(bme-dach)] was directly synthesized for X-ray structural characterization of the metal exchanged product observed in mass spectrometry experiments. In the case of Au compounds, the reactions were very fast and the products were similar for both [AuCl(L)]Cl(2) (L = terpy and dien) starting materials. In addition to the multimetallic Zn,Au,Zn aggregate formation, the predominant species from the reaction between [Zn(bme-dach)](2) and both Au compounds was the [Au(bme-dach](+) cation observable via ESI-MS, suggesting Zn/Au metal exchange immediately after mixing the compounds. The direct synthesis of [Au(bme-dach)]BPh(4) confirmed the molecular structure of this species through X-ray crystallography. The reactivity profile of Pd(2+) and Au(3+) species is compared with previous studies using the isostructural Pt compounds and the biological relevance of the results discussed.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources