Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;54(2):186-94.
doi: 10.1002/mnfr.200900259.

Testing computational toxicology models with phytochemicals

Affiliations

Testing computational toxicology models with phytochemicals

Luis G Valerio Jr et al. Mol Nutr Food Res. 2010 Feb.

Abstract

Computational toxicology employing quantitative structure-activity relationship (QSAR) modeling is an evidence-based predictive method being evaluated by regulatory agencies for risk assessment and scientific decision support for toxicological endpoints of interest such as rodent carcinogenicity. Computational toxicology is being tested for its usefulness to support the safety assessment of drug-related substances (e.g. active pharmaceutical ingredients, metabolites, impurities), indirect food additives, and other applied uses of value for protecting public health including safety assessment of environmental chemicals. The specific use of QSAR as a chemoinformatic tool for estimating the rodent carcinogenic potential of phytochemicals present in botanicals, herbs, and natural dietary sources is investigated here by an external validation study, which is the most stringent scientific method of measuring predictive performance. The external validation statistics for predicting rodent carcinogenicity of 43 phytochemicals, using two computational software programs evaluated at the FDA, are discussed. One software program showed very good performance for predicting non-carcinogens (high specificity), but both exhibited poor performance in predicting carcinogens (sensitivity), which is consistent with the design of the models. When predictions were considered in combination with each other rather than based on any one software, the performance for sensitivity was enhanced, However, Chi-square values indicated that the overall predictive performance decreases when using the two computational programs with this particular data set. This study suggests that complementary multiple computational toxicology software need to be carefully selected to improve global QSAR predictions for this complex toxicological endpoint.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources