Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug 18:1:RRN1001.
doi: 10.1371/currents.rrn1001.

Evolutionary dynamics of N-glycosylation sites of influenza virus hemagglutinin

Affiliations

Evolutionary dynamics of N-glycosylation sites of influenza virus hemagglutinin

Joshua L Cherry et al. PLoS Curr. .

Abstract

The hemagglutinin protein of influenza virus bears several sites of N-linked asparagine glycosylation. The number and location of these sites varies with strain and substrain. The human H3 hemagglutinin has gained several glycosylation sites on the antigenically important globular head since its introduction to humans, presumably due to selection. Although there is abundant evidence that glycosylation can affect antigenic and functional properties of the protein, direct evidence for selection is lacking. We have analyzed gain and loss of glycosylation sites on the side branches of a large phylogenetic tree of H(3) HA1 sequences (branches off of the main, long-term line of descent). Side branches contrast with the main line of descent: losses of glycosylation sites are not uncommon, and they outnumber gains. Although other explanations are possible, this observation is consistent with weak selection for glycosylation sites or a more complicated pattern of selection. Furthermore, terminal and internal branches differ with respect to rates of gain and loss of glycosylation sites. This pattern would not be expected under selective neutrality, but is easily explained by weak selection or selection that changes with the immune state of the host population. Thus, it provides evidence that selection acts on the glycosylation state of hemagglutinin.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531-69. Review. - PubMed
    1. Wrigley NG, Brown EB, Daniels RS, Douglas AR, Skehel JJ, Wiley DC. Electron microscopy of influenza haemagglutinin-monoclonal antibody complexes. Virology. 1983 Dec;131(2):308-14. - PubMed
    1. Skehel JJ, Stevens DJ, Daniels RS, Douglas AR, Knossow M, Wilson IA, Wiley DC. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779-83. - PMC - PubMed
    1. Abe Y, Takashita E, Sugawara K, Matsuzaki Y, Muraki Y, Hongo S. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol. 2004 Sep;78(18):9605-11. - PMC - PubMed
    1. Blackburne BP, Hay AJ, Goldstein RA. Changing selective pressure during antigenic changes in human influenza H3. PLoS Pathog. 2008 May 2;4(5):e1000058. - PMC - PubMed