Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 29;469(3):343-7.
doi: 10.1016/j.neulet.2009.12.024. Epub 2009 Dec 18.

Decreases in rat brain aquaporin-4 expression following intracerebroventricular administration of an endothelin ET B receptor agonist

Affiliations

Decreases in rat brain aquaporin-4 expression following intracerebroventricular administration of an endothelin ET B receptor agonist

Yutaka Koyama et al. Neurosci Lett. .

Abstract

Aquaporins (AQPs) comprise a family of water channel proteins, some of which are expressed in brain. Expressions of brain AQPs are altered after brain insults, such as ischemia and head trauma. However, little is known about the regulation of brain AQP expression. Endothelins (ETs), vasoconstrictor peptides, regulate several pathophysiological responses of damaged nerve tissues via ET(B) receptors. To show possible roles of ET(B) receptors in the regulation of brain AQP expression, the effects of intracerebroventricular administration of an ET(B) agonist were examined in rat brain. In the cerebrum, the copy numbers of AQP4 mRNAs were highest among AQP1, 3, 4, 5 and 9. Continuous administration of 500 pmol/day Ala(1,3,11,15)-ET-1, an ET(B) selective agonist, into rat brain for 7 days decreased the level of AQP4 mRNA in the cerebrum, but had no effect on AQP1, 3, 5 and 9 mRNA levels. The level of AQP4 protein in the cerebrum decreased by the administration of Ala(1,3,11,15)-ET-1. Immunohistochemical observations of Ala(1,3,11,15)-ET-1-infused rats showed that GFAP-positive astrocytes, but not neurons, activated microglia or brain capillary endothelial cells, had immunoreactivity for AQP4. These findings indicate that activation of brain ET(B) receptors causes a decrease in AQP4 expression, suggesting that ET down-regulates brain AQP4 via ET(B) receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources