Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;56(3):508-15.
doi: 10.1016/j.neuint.2009.12.011. Epub 2009 Dec 22.

Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells

Affiliations

Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells

Qian Chen Yong et al. Neurochem Int. 2010 Feb.

Abstract

Hydrogen sulfide (H(2)S) is now known as a new biological mediator. In the present study, the effects of H(2)S on intracellular calcium ([Ca(2+)](i)) in neuronal SH-SY5Y cells was investigated. In SH-SY5Y neuronal cells, NaHS, a H(2)S donor, concentration-dependently increased [Ca(2+)](i). The H(2)S-induced Ca(2+) elevation was significantly attenuated by EGTA-treated calcium-free Krebs' solution. This elevation was also reduced by antagonists of L-type (verapamil and nifedipine), T-type (mibefradil) calcium channels and N-methyl-d-aspartate receptor (MK-801, AP-5 and ifenprodil). A 90% reduction in H(2)S-induced [Ca(2+)](i) elevation was found in cells pretreated with combination of all three kinds of inhibitors. Depletion of intracellular Ca(2+) store with thapsigargin or cyclopiazonic acid or blockade of ryanodine receptor with ruthenium red significantly attenuated the effect of H(2)S on [Ca(2+)](i). Inhibition of protein kinase A (PKA), phospholipase C (PLC) and protein kinase C (PKC) suppressed the H(2)S-elevated [Ca(2+)](i), suggesting that H(2)S may regulate [Ca(2+)](i) via both PKA and PLC/PKC pathways. In conclusion, it was found in this study that H(2)S increased [Ca(2+)](i) in SH-SY5Y neuronal cells by increasing Ca(2+) influx via plasma membrane and in turn releasing calcium from intracellular calcium store. The findings in the present study provide the direct evidence that H(2)S may serve as a neuromodulator.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources