The ferritin superfamily: Supramolecular templates for materials synthesis
- PMID: 20026386
- PMCID: PMC3763752
- DOI: 10.1016/j.bbagen.2009.12.005
The ferritin superfamily: Supramolecular templates for materials synthesis
Abstract
Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.
Copyright 2010 Elsevier B.V. All rights reserved.
Figures












Similar articles
-
Self-Assembly of Ferritin: Structure, Biological Function and Potential Applications in Nanotechnology.Adv Exp Med Biol. 2019;1174:313-329. doi: 10.1007/978-981-13-9791-2_10. Adv Exp Med Biol. 2019. PMID: 31713204 Review.
-
Electrostatic Self-Assembly of Protein Cage Arrays.Methods Mol Biol. 2021;2208:123-133. doi: 10.1007/978-1-0716-0928-6_8. Methods Mol Biol. 2021. PMID: 32856259
-
The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor.Biochim Biophys Acta. 2010 Aug;1800(8):691-705. doi: 10.1016/j.bbagen.2010.05.010. Epub 2010 May 27. Biochim Biophys Acta. 2010. PMID: 20553812 Review.
-
Electrostatic and Structural Bases of Fe2+ Translocation through Ferritin Channels.J Biol Chem. 2016 Dec 2;291(49):25617-25628. doi: 10.1074/jbc.M116.748046. Epub 2016 Oct 18. J Biol Chem. 2016. PMID: 27756844 Free PMC article.
-
Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.Acc Chem Res. 2016 May 17;49(5):784-91. doi: 10.1021/ar500469e. Epub 2016 May 2. Acc Chem Res. 2016. PMID: 27136423
Cited by
-
Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface.RSC Adv. 2019 Aug 9;9(43):24777-24782. doi: 10.1039/c9ra04785a. eCollection 2019 Aug 8. RSC Adv. 2019. PMID: 35528680 Free PMC article.
-
Untapped Potential of Deep Eutectic Solvents for the Synthesis of Bioinspired Inorganic-Organic Materials.Chem Mater. 2023 Aug 18;35(19):7878-7903. doi: 10.1021/acs.chemmater.3c00847. eCollection 2023 Oct 10. Chem Mater. 2023. PMID: 37840775 Free PMC article. Review.
-
Temperature-Dependent Coherent Tunneling across Graphene-Ferritin Biomolecular Junctions.ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44665-44675. doi: 10.1021/acsami.2c11263. Epub 2022 Sep 23. ACS Appl Mater Interfaces. 2022. PMID: 36148983 Free PMC article.
-
Engineering intracellular biomineralization and biosensing by a magnetic protein.Nat Commun. 2015 Nov 2;6:8721. doi: 10.1038/ncomms9721. Nat Commun. 2015. PMID: 26522873 Free PMC article.
-
Combined Method to Remove Endotoxins from Protein Nanocages for Drug Delivery Applications: The Case of Human Ferritin.Pharmaceutics. 2021 Feb 6;13(2):229. doi: 10.3390/pharmaceutics13020229. Pharmaceutics. 2021. PMID: 33562060 Free PMC article.
References
-
- Koeck PJB, Kagawa HK, Ellis MJ, Hebert H, Trent JD. Two-dimensional crystals of reconstituted .beta.-subunits of the chaperonin TF55 from Sulfolobus shibatae. Biochim Biophys Acta. 1998;1429:40–44. - PubMed
-
- Trent JD. A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev. 1996;18:249–258.
-
- Kim KK, Kim R, Kim SH. Crystal structure of a small heat-shock protein. Nature. 1998;394:595–599. - PubMed
-
- Bozzi M, Mignogna G, Stefanini S, Barra D, Longhi C, Valenti P, Chiancone E. A Novel Non-heme Iron-binding Ferritin Related to the DNA-binding Proteins of the Dps Family in Listeria innocua. J Biol Chem. 1997;272:3259–3265. - PubMed
-
- Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nature Structural Biology. 1998;5:294–303. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources