Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;87(12):1095-101.
doi: 10.1139/Y09-101.

Vascular responses to nitrite are mediated by xanthine oxidoreductase and mitochondrial aldehyde dehydrogenase in the rat

Affiliations

Vascular responses to nitrite are mediated by xanthine oxidoreductase and mitochondrial aldehyde dehydrogenase in the rat

Neel H Golwala et al. Can J Physiol Pharmacol. 2009 Dec.

Abstract

Sodium nitrite has been shown to have vasodilator activity in experimental animals and in human subjects. However, the mechanism by which nitrite anion is converted to vasoactive nitric oxide (NO) is uncertain. It has been hypothesized that deoxyhemoglobin, xanthine oxidoreductase, mitochondrial aldehyde dehydrogenase, and other heme proteins can reduce nitrite to NO, but studies in the literature have not identified the mechanism in the intact rat, and several studies report no effect of inhibitors of xanthine oxidoreductase. In the present study, the effects of the xanthine oxidoreductase inhibitor allopurinol and the mitochondrial aldehyde dehydrogenase inhibitor cyanamide on decreases in mean systemic arterial pressure in response to i.v. sodium nitrite administration were investigated in the rat. The decreases in mean systemic arterial pressure in response to i.v. administration of sodium nitrite were inhibited in a selective manner after administration of allopurinol in a dose of 25 mg/kg i.v. A second 25 mg/kg i.v. dose had no additional inhibitory effect on the response to sodium nitrite. The decreases in mean systemic arterial pressure in response to sodium nitrite were attenuated by cyanamide and a second 25 mg/kg i.v. dose had no additional inhibitory effect. In L-NAME-treated animals, allopurinol attenuated responses to sodium nitrite and a subsequent administration of cyanamide had no additional effect. When the order of administration of the inhibitors was reversed, responses to sodium nitrite were attenuated by administration of cyanamide and a subsequent administration of allopurinol had no additional inhibitory effect. The results of these studies suggest that nitrite can be reduced to vasoactive NO in the systemic vascular bed of the rat by xanthine oxidoreductase and mitochondrial aldehyde dehydrogenase and that the 2 pathways of nitrite activation act in a parallel manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources