Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;106(5):396-405.
doi: 10.1111/j.1742-7843.2009.00502.x. Epub 2009 Dec 22.

Calcium-sensing receptors induce apoptosis in rat cardiomyocytes via the endo(sarco)plasmic reticulum pathway during hypoxia/reoxygenation

Affiliations
Free article

Calcium-sensing receptors induce apoptosis in rat cardiomyocytes via the endo(sarco)plasmic reticulum pathway during hypoxia/reoxygenation

Fanghao Lu et al. Basic Clin Pharmacol Toxicol. 2010 May.
Free article

Abstract

The calcium-sensing receptor (CaR) is a G protein-coupled receptor. The CaR stimulation elicits phospholipase C-mediated inositol triphosphate formation, leading to an elevation in the level of intracellular calcium released from endoplasmic reticulum (ER). Depletion of ER Ca(2+) leads to ER stress, which is thought to induce apoptosis. Intracellular calcium overload-induced apoptosis in cardiac myocytes during hypoxia-reoxygenation (H/Re) has been demonstrated. However, the links between CaR, ER stress and apoptosis during H/Re are unclear. This study hypothesized that the CaR could induce apoptosis in neonatal rat cardiomyocytes during H/Re via the ER stress pathway. Neonatal rat cardiomyocytes were subjected to 3 hr of hypoxia, followed by 6 hr of reoxygenation. CaR expression was elevated and the number of apoptotic cells was significantly increased, as shown by transferase-mediated dUTP nick end-labelling, with exposure to CaCl(2), a CaR activator, during H/Re. The intracellular calcium concentration was significantly elevated and the Ca(2+) concentration in the ER was dramatically decreased during H/Re with CaCl(2); both intracellular and ER calcium concentrations were detected by laser confocal microscopy. Expression of GRP78 (glucose-regulated protein 78), the cleavage products of ATF6 (activating transcription factor 6), phospho-PERK [pancreatic ER kinase (PKR)-like ER kinase], the activated fragments of caspase-12, and phospho-JNK (c-Jun NH(2)-terminal kinase) were increased following exposure to CaCl(2) during H/Re. Our results confirmed that the activated CaR can induce cardiomyocyte apoptosis via ER stress-associated apoptotic pathways during H/Re.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources