Ultrasonic transcutaneous energy transfer for powering implanted devices
- PMID: 20031183
- DOI: 10.1016/j.ultras.2009.11.004
Ultrasonic transcutaneous energy transfer for powering implanted devices
Abstract
This paper investigates ultrasonic transcutaneous energy transfer (UTET) as a method for energizing implanted devices at power level up to a few 100 mW. We propose a continuous wave 673 kHz single frequency operation to power devices implanted up to 40 mm deep subcutaneously. The proposed UTET demonstrated an overall peak power transfer efficiency of 27% at 70 mW output power (rectified DC power at the load). The transducers consisted of PZT plane discs of 15 mm diameter and 1.3mm thick acoustic matching layer made of graphite. The power rectifier on the implant side attained 88.5% power transfer efficiency. The proposed approach is analyzed in detail, with design considerations provided to address issues such as recommended operating frequency range, acoustic link matching, receiver's rectifying electronics, and tissue bio-safety concerns. Global optimization and design considerations for maximum power transfer are presented and verified by means of finite element simulations and experimental results.
Copyright 2009 Elsevier B.V. All rights reserved.
Similar articles
-
Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter.Ultrasonics. 2010 Jun;50(7):666-74. doi: 10.1016/j.ultras.2010.01.004. Epub 2010 Feb 6. Ultrasonics. 2010. PMID: 20219226
-
Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.Ultrasonics. 2014 Sep;54(7):1929-37. doi: 10.1016/j.ultras.2014.04.019. Epub 2014 May 2. Ultrasonics. 2014. PMID: 24861424
-
Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.IEEE Trans Biomed Eng. 2014 Apr;61(4):995-1004. doi: 10.1109/TBME.2013.2280460. Epub 2013 Sep 5. IEEE Trans Biomed Eng. 2014. PMID: 24013825
-
Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.Sensors (Basel). 2014 Dec 11;14(12):23843-70. doi: 10.3390/s141223843. Sensors (Basel). 2014. PMID: 25615728 Free PMC article. Review.
-
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.Sensors (Basel). 2016 Mar 18;16(3):393. doi: 10.3390/s16030393. Sensors (Basel). 2016. PMID: 26999154 Free PMC article. Review.
Cited by
-
In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.Ultrasonics. 2016 Jan;64:1-9. doi: 10.1016/j.ultras.2015.07.012. Epub 2015 Jul 29. Ultrasonics. 2016. PMID: 26243566 Free PMC article.
-
Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations.Adv Sci (Weinh). 2021 Feb 19;8(8):2004023. doi: 10.1002/advs.202004023. eCollection 2021 Apr. Adv Sci (Weinh). 2021. PMID: 33898184 Free PMC article. Review.
-
Bioelectronic devices for light-based diagnostics and therapies.Biophys Rev (Melville). 2023 Jan 20;4(1):011304. doi: 10.1063/5.0102811. eCollection 2023 Mar. Biophys Rev (Melville). 2023. PMID: 38505817 Free PMC article. Review.
-
Wireless Technologies for Implantable Devices.Sensors (Basel). 2020 Aug 16;20(16):4604. doi: 10.3390/s20164604. Sensors (Basel). 2020. PMID: 32824365 Free PMC article. Review.
-
Distributed sensor and actuator networks for closed-loop bioelectronic medicine.Mater Today (Kidlington). 2021 Jun;46:125-135. doi: 10.1016/j.mattod.2020.12.020. Epub 2021 Mar 6. Mater Today (Kidlington). 2021. PMID: 34366697 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources