Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury
- PMID: 20032114
- PMCID: PMC2838607
- DOI: 10.1152/ajprenal.00683.2009
Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury
Abstract
Rhabdomyolysis (Fe)-induced acute renal failure (ARF) causes renal inflammation, and, with repetitive insults, progressive renal failure can result. To gain insights into these phenomena, we assessed the impact of a single episode of glycerol-induced rhabdomyolysis on proinflammatory/profibrotic [TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta1 (TGF-beta1)] gene expression and the time course of these changes. CD-1 mice were studied 1-7 days after glycerol injection. Normal mice served as controls. RNA polymerase II (Pol II) binding to the TNF-alpha, MCP-1, and TGF-beta1 genes, "gene-activating" histone modifications [histone 3 lysine 4 (H3K4) trimethylation (H3K4m3) and histone 2 variant H2A.Z], and cognate mRNA levels were assessed. Results were contrasted to changes in anti-inflammatory heme oxygenase-1 (HO-1). Glycerol produced severe ARF (blood urea nitrogen approximately 150-180 mg/dl) followed by marked improvement by day 7 (blood urea nitrogen approximately 40 mg/dl). Early increases in TNF-alpha, MCP-1, and TGF-beta1 mRNAs, Pol II gene binding, and H3K4m3/H2A.Z levels were observed. These progressed with time, despite resolution of azotemia. Comparable early HO-1 changes were observed. However, HO-1 mRNA normalized by day 7, and progressive Pol II binding/histone alterations did not occur. Fe-mediated injury to cultured proximal tubule (HK-2) cells recapitulated these in vivo results. Hence, this in vitro model was used for mechanistic assessments. On the basis of these studies, it was determined that 1) the H3K4m3/H2A.Z increases are early events (i.e., they precede mRNA increases), 2) subsequent mRNA elevations reflect transcription, not mRNA stabilization (actinomycin D assessments), and 3) increased transcription, per se, helps sustain elevated H2A.Z levels. We conclude that 1) Fe/glycerol-induced tubular injury causes sustained proinflammatory gene activation, 2) decreasing HO-1 expression, as reflected by mRNA levels, may facilitate this proinflammatory state, and 3) gene-activating histone modifications are early injury events and progressively increase at selected proinflammatory genes. Thus they may help sustain a proinflammatory state, despite resolving ARF.
Figures















References
-
- Baliga R, Zhang Z, Baliga M, Ueda N, Shas SV. Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int 54: 15623–1569, 1998 - PubMed
-
- Baliga R, Zhang M, Shah SV. Evidence for cytochrome P-450 as a source of catalytic iron in myoglobinuric acute renal failure. Kidney Int 49: 362–369, 1996 - PubMed
-
- Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ, 3rd, Gingeras TR. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169–181, 2005 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous