Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 24;462(7276):1052-5.
doi: 10.1038/nature08649.

The velocity of climate change

Affiliations

The velocity of climate change

Scott R Loarie et al. Nature. .

Abstract

The ranges of plants and animals are moving in response to recent changes in climate. As temperatures rise, ecosystems with 'nowhere to go', such as mountains, are considered to be more threatened. However, species survival may depend as much on keeping pace with moving climates as the climate's ultimate persistence. Here we present a new index of the velocity of temperature change (km yr(-1)), derived from spatial gradients ( degrees C km(-1)) and multimodel ensemble forecasts of rates of temperature increase ( degrees C yr(-1)) in the twenty-first century. This index represents the instantaneous local velocity along Earth's surface needed to maintain constant temperatures, and has a global mean of 0.42 km yr(-1) (A1B emission scenario). Owing to topographic effects, the velocity of temperature change is lowest in mountainous biomes such as tropical and subtropical coniferous forests (0.08 km yr(-1)), temperate coniferous forest, and montane grasslands. Velocities are highest in flooded grasslands (1.26 km yr(-1)), mangroves and deserts. High velocities suggest that the climates of only 8% of global protected areas have residence times exceeding 100 years. Small protected areas exacerbate the problem in Mediterranean-type and temperate coniferous forest biomes. Large protected areas may mitigate the problem in desert biomes. These results indicate management strategies for minimizing biodiversity loss from climate change. Montane landscapes may effectively shelter many species into the next century. Elsewhere, reduced emissions, a much expanded network of protected areas, or efforts to increase species movement may be necessary.

PubMed Disclaimer

Similar articles

  • Global human influence maps reveal clear opportunities in conserving Earth's remaining intact terrestrial ecosystems.
    Riggio J, Baillie JEM, Brumby S, Ellis E, Kennedy CM, Oakleaf JR, Tait A, Tepe T, Theobald DM, Venter O, Watson JEM, Jacobson AP. Riggio J, et al. Glob Chang Biol. 2020 Aug;26(8):4344-4356. doi: 10.1111/gcb.15109. Epub 2020 Jun 5. Glob Chang Biol. 2020. PMID: 32500604 Free PMC article.
  • Exposure of U.S. National Parks to land use and climate change 1900-2100.
    Hansen AJ, Piekielek N, Davis C, Haas J, Theobald DM, Gross JE, Monahan WB, Olliff T, Running SW. Hansen AJ, et al. Ecol Appl. 2014 Apr;24(3):484-502. doi: 10.1890/13-0905.1. Ecol Appl. 2014. PMID: 24834735
  • Terrestrial biodiversity threatened by increasing global aridity velocity under high-level warming.
    Shi H, Tian H, Lange S, Yang J, Pan S, Fu B, Reyer CPO. Shi H, et al. Proc Natl Acad Sci U S A. 2021 Sep 7;118(36):e2015552118. doi: 10.1073/pnas.2015552118. Proc Natl Acad Sci U S A. 2021. PMID: 34462347 Free PMC article.
  • CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change.
    Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DF, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng X, Detto M, Du X, Duque A, Erikson DL, Ewango CE, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao Z, Hargrove WW, Hart TB, Hau BC, He F, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang M, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li Y, Li X, Liu S, Lum SK, Lutz JA, Ma K, Maddalena DM, Makana JR, Malhi Y, Marthews T, Mat Serudin R, McMahon SM, McShea WJ, Memiaghe HR, Mi X, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang W, Sri-Ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrška T, Wang X, Wang X, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J. Anderson-Teixeira KJ, et al. Glob Chang Biol. 2015 Feb;21(2):528-49. doi: 10.1111/gcb.12712. Epub 2014 Sep 25. Glob Chang Biol. 2015. PMID: 25258024 Review.
  • Forest wildlife management and conservation.
    Lindenmayer DB. Lindenmayer DB. Ann N Y Acad Sci. 2009 Apr;1162:284-310. doi: 10.1111/j.1749-6632.2009.04148.x. Ann N Y Acad Sci. 2009. PMID: 19432653 Review.

Cited by

References

    1. Science. 2006 Sep 1;313(5791):1284-6 - PubMed
    1. Science. 2008 Oct 10;322(5899):261-4 - PubMed
    1. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11823-6 - PubMed
    1. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8245-50 - PubMed
    1. Science. 2008 Jun 27;320(5884):1768-71 - PubMed

Publication types