Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:180:83-101.
doi: 10.1007/978-3-540-78281-0_6.

Vascular integrins: therapeutic and imaging targets of tumor angiogenesis

Affiliations
Review

Vascular integrins: therapeutic and imaging targets of tumor angiogenesis

Curzio Rüegg et al. Recent Results Cancer Res. 2010.

Abstract

Cells, including endothelial cells, continuously sense their surrounding environment and rapidly adapt to changes in order to assure tissues and organs homeostasis. The extracellular matrix (ECM) provides a physical scaffold for cell positioning and represents an instructive interface allowing cells to communicate over short distances. Cell surface receptors of the integrin family emerged through evolution as essential mediators and integrators of ECM-dependent communication. In preclinical studies, pharmacological inhibition of vascular integrins suppressed angiogenesis and inhibited tumor progression. alpha(V)beta(3) and alpha(V)beta(5) were the first integrins targeted to suppress tumor angiogenesis. Subsequently, additional integrins, in particular alpha(1)beta(1), alpha(2)beta(1), alpha(5)beta(1), and alpha(6)beta(4), emerged as potential therapeutic targets. Integrin inhibitors are currently tested in clinical trials for their safety and antiangiogenic/antitumor activity. In this chapter, we review the role of integrins in angiogenesis and present recent advances in the use of integrin antagonists as potential therapeutics in cancer and discuss future perspectives.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms