Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 15;16(7):2309-16.
doi: 10.1002/chem.200901734.

An expeditious multigram-scale synthesis of lysine dendrigraft (DGL) polymers by aqueous N-carboxyanhydride polycondensation

Affiliations

An expeditious multigram-scale synthesis of lysine dendrigraft (DGL) polymers by aqueous N-carboxyanhydride polycondensation

Hélène Collet et al. Chemistry. .

Abstract

The synthesis and characterisation of new arborescent architectures of poly(L-lysine), called lysine dendrigraft (DGL) polymers, are described. DGL polymers were prepared through a multiple-generation scheme (up to generation 5) in a weakly acidic aqueous medium by polycondensing N(epsilon)-trifluoroacetyl-L-lysine-N-carboxyanhydride (Lys(Tfa)-NCA) onto the previous generation G(n-1) of DGL, which was used as a macroinitiator. The first generation employed spontaneous NCA polycondensation in water without a macroinitiator; this afforded low-molecular-weight, linear poly(L-lysine) G1 with a polymerisation degree of 8 and a polydispersity index of 1.2. The spontaneous precipitation of the growing N(epsilon)-Tfa-protected polymer (GnP) ensures moderate control of the molecular weight (with unimodal distribution) and easy work-up. The subsequent alkaline removal of Tfa protecting groups afforded generation Gn of DGL as a free form (with 35-60% overall yield from NCA precursor, depending on the DGL generation) that was either used directly in the synthesis of the next generation (G(n+1)) or collected for other uses. Unprotected forms of DGL G1-G5 were characterised by size-exclusion chromatography, capillary electrophoresis and (1)H NMR spectroscopy. The latter technique allowed us to assess the branching density of DGL, the degree of which (ca. 25%) turned out to be intermediate between previously described dendritic graft poly(L-lysines) and lysine dendrimers. An optimised monomer (NCA) versus macroinitiator (DGL G(n-1)) ratio allowed us to obtain unimodal molecular weight distributions with polydispersity indexes ranging from 1.3 to 1.5. Together with the possibility of reaching high molecular weights (with a polymerisation degree of ca. 1000 for G5) within a few synthetic steps, this synthetic route to DGL provides an easy, cost-efficient, multigram-scale access to dendritic polylysines with various potential applications in biology and in other domains.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources