The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function
- PMID: 20034580
- PMCID: PMC4096947
- DOI: 10.1016/j.neuroimage.2009.12.058
The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function
Abstract
Brain presynaptic dopaminergic function can be assessed using 18F-DOPA positron emission tomography (PET). Regional 18F-DOPA utilization may be used to index dopaminergic abnormalities over time or dopaminergic response to treatment in clinical populations. Such studies require prior knowledge of the stability of the 18F-DOPA signal in the brain regions of interest. Test-retest reliability was examined in eight healthy volunteers who each received two 18F-DOPA PET scans, approximately 2 years apart. 18F-DOPA utilization (k(i)(cer)) was determined using graphical analysis relative to a reference tissue input (Patlak and Blasberg, 1985). Reproducibility (measured as the within-subjects variation) and reliability (measured as intraclass correlation coefficients, ICCs) of 18F-DOPA k(i)(cer) were assessed in the structural and functional subdivisions of the striatum and select extrastriatal brain regions. Voxel-based median ICC maps were used to visualize the distribution of 18F-DOPA k(i)(cer) reliability across the brain. The caudate and putamen, and associative and sensorimotor, striatal subdivisions showed good reliability across the two scan sessions with bilateral ICCs ranging from 0.681 to 0.944. Reliability was generally lower in extrastriatal regions, with bilateral ICCs ranging from 0.235 in the amygdala to 0.894 in the thalamus. These data confirm the utility of 18F-DOPA PET in assessing dopaminergic function in the striatum and select extrastriatal areas but highlight the limitations in using this approach to measure dopaminergic function in low uptake extrastriatal brain areas. This information can be used to optimize the experimental design of future studies investigating changes in brain dopaminergic function with 18F-DOPA.
Copyright 2009 Elsevier Inc. All rights reserved.
Figures


Similar articles
-
Reproducibility of PET measurement for presynaptic dopaminergic functions using L-[β-(11)C]DOPA and [(18)F]FE-PE2I in humans.Nucl Med Commun. 2014 Mar;35(3):231-7. doi: 10.1097/MNM.0000000000000052. Nucl Med Commun. 2014. PMID: 24468851
-
Progression of monoaminergic dysfunction in Parkinson's disease: a longitudinal 18F-dopa PET study.Neuroimage. 2011 Jun 1;56(3):1463-8. doi: 10.1016/j.neuroimage.2011.03.012. Epub 2011 Mar 17. Neuroimage. 2011. PMID: 21396455
-
Nature or nurture? Determining the heritability of human striatal dopamine function: an [18F]-DOPA PET study.Neuropsychopharmacology. 2013 Feb;38(3):485-91. doi: 10.1038/npp.2012.207. Epub 2012 Oct 24. Neuropsychopharmacology. 2013. PMID: 23093224 Free PMC article.
-
[Evaluation of dopaminergic presynaptic function by [F-18] DOPA PET].Rinsho Shinkeigaku. 2007 Nov;47(11):829-31. Rinsho Shinkeigaku. 2007. PMID: 18210809 Japanese.
-
Imaging in Parkinson's disease: the role of monoamines in behavior.Biol Psychiatry. 2006 May 15;59(10):908-18. doi: 10.1016/j.biopsych.2005.12.017. Epub 2006 Apr 11. Biol Psychiatry. 2006. PMID: 16581032 Review.
Cited by
-
Dopaminergic function in the psychosis spectrum: an [18F]-DOPA imaging study in healthy individuals with auditory hallucinations.Schizophr Bull. 2013 Jul;39(4):807-14. doi: 10.1093/schbul/sbr195. Epub 2012 Jan 26. Schizophr Bull. 2013. PMID: 22282457 Free PMC article.
-
Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making.Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1595-600. doi: 10.1073/pnas.1417219112. Epub 2015 Jan 20. Proc Natl Acad Sci U S A. 2015. PMID: 25605941 Free PMC article.
-
Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis.Schizophr Bull. 2017 Mar 1;43(2):293-301. doi: 10.1093/schbul/sbw181. Schizophr Bull. 2017. PMID: 28057720 Free PMC article.
-
Cerebral [18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits.Diagnostics (Basel). 2021 Dec 20;11(12):2404. doi: 10.3390/diagnostics11122404. Diagnostics (Basel). 2021. PMID: 34943640 Free PMC article.
-
A Test of the Transdiagnostic Dopamine Hypothesis of Psychosis Using Positron Emission Tomographic Imaging in Bipolar Affective Disorder and Schizophrenia.JAMA Psychiatry. 2017 Dec 1;74(12):1206-1213. doi: 10.1001/jamapsychiatry.2017.2943. JAMA Psychiatry. 2017. PMID: 29049482 Free PMC article.
References
-
- Bose SK, Turkheimer FE, Howes OD, Mehta MA, Cunliffe R, Stokes PR, Grasby PM. Classification of schizophrenic patients and healthy controls using [18F] fluorodopa PET imaging. Schizophr.Res. 2008;106:148–155. - PubMed
-
- Bouchard S, Bousquet C, Roberge AG. Characteristics of dihydroxyphenylalanine/5-hydroxytryptophan decarboxylase activity in brain and liver of cat. J.Neurochem. 1981;37:781–787. - PubMed
-
- Brooks DJ. Imaging end points for monitoring neuroprotection in Parkinson’s disease. Ann.Neurol. 2003a;53(Suppl 3):S110–S118. - PubMed
-
- Brooks DJ. PET studies on the function of dopamine in health and Parkinson’s disease. Ann.N.Y.Acad.Sci. 2003b;991:22–35. - PubMed
-
- Brooks DJ, Frey KA, Marek KL, Oakes D, Paty D, Prentice R, Shults CW, Stoessl AJ. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp.Neurol. 2003;184(Suppl 1):S68–S79. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources