Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Nov-Dec;32(6):589-99.

Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease

Affiliations
  • PMID: 20035637
Free article
Review

Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease

Tsu-Kung Lin et al. Chang Gung Med J. 2009 Nov-Dec.
Free article

Abstract

Parkinson's disease (PD) is a progressive neurological disorder marked by nigrostriatal dopaminergic degeneration and development of cytoplasmic aggregates known as Lewy bodies. The impact of this disease is indicated by the fact that mortality is two to five times as high among affected persons as among age-matched controls. However, the cause of PD is still unknown and no cure is available at present. Several biochemical abnormalities have been described in the brains of patients with PD, including oxidative stress and mitochondrial dysfunction. Recent identification of specific gene mutations that cause PD has further reinforced the relevance of oxidative stress and mitochondrial dysfunction in the familial and sporadic forms of the disease. The proteins that are reported to be related to familial PD-PTEN-induced putative kinase 1 (PINK1), DJ-1, alpha- synuclein, leucine-rich repeat kinase 2 (LRRK2), and, possibly, parkin-are either mitochondrial proteins or are associated with mitochondria, and all are involved in pathways that elicit oxidative stress or free radical damage. Mitochondria are continually exposed to reactive oxygen species and accumulate oxidative damage more rapidly than the rest of the cell. Therefore, Parkinson's disease has been suggested to be associated with mitochondrial dysfunction. Since mitochondria are the major intracellular organelles that regulate both cell survival and death, clarifying the involvement of mitochondrial dysfunction and biogenesis during the process of PD could provide treatment strategies that might successfully intervene in the pathogenesis and slow the progression of the disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types